Certified Proof Carrying Code

by abstract interpretation
Types Summer School 2007 - Bertinoro - Italy

David Pichardie

INRIA Rennes - Bretagne Atlantique



R
Outline

@ Certified static analysis

David Pichardie I e tract interpretation



R
Outline

@ Certified static analysis
@ Introduction

David Pichardie



R
Outline

@ Certified static analysis
@ Introduction
@ Building a certified static analyser

David Pichardie fied Proof C Code by abstract interpre!



R
Outline

@ Certified static analysis
@ Introduction
@ Building a certified static analyser

@ From certified static analysis to certified PCC

David Pichardie



R
Outline

@ Certified static analysis
@ Introduction
@ Building a certified static analyser

@ From certified static analysis to certified PCC

@ A case study : array-bound checks polyhedral analysis

David Pichardie Certified Proof Carrying Code by abstract interpretation



R
Outline

@ Certified static analysis
@ Introduction
@ Building a certified static analyser

@ From certified static analysis to certified PCC

@ A case study : array-bound checks polyhedral analysis
@ Polyhedral abstract interpretation

David Pichardie Certified Proof Carrying Code by abstract interpretation



R
Outline

@ Certified static analysis
@ Introduction
@ Building a certified static analyser

@ From certified static analysis to certified PCC

@ A case study : array-bound checks polyhedral analysis
@ Polyhedral abstract interpretation
o Certified polyhedral abstract interpretation

David Pichardie Certified Proof Carrying Code by abstract interpretation



R
Outline

@ Certified static analysis
@ Introduction
@ Building a certified static analyser

@ From certified static analysis to certified PCC

@ A case study : array-bound checks polyhedral analysis
@ Polyhedral abstract interpretation
o Certified polyhedral abstract interpretation
@ Application : a polyhedral bytecode analyser

David Pichardie Certified Proof Carrying Code by abstract interpretation



Certified static analysis [R{E(e[FTGToE

Static program analysis

The goals of static program analysis
» To prove properties about the run-time behaviour of a program
> In a fully automatic way
» Without actually executing this program
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Static program analysis

The goals of static program analysis
» To prove properties about the run-time behaviour of a program
> In a fully automatic way

» Without actually executing this program

Solid foundations for designing an analyser

> Abstract Interpretation gives a guideline
> to formalise analyses
> to prove their soundness with respect to the semantics of the programming
language

> Resolution of constraints on lattices by iteration and symbolic
computation

David Pichardie Certified Proof Carrying Code by abstract interpretation 3/55



So what’s the problem ?
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Implementation

matrix_t* _matrix_alloc_int(const int mr, const int nc)

matrix_t+ mat = (matrix_tx)malloc (sizeof (matrix_t));
mat->nbrows = mat->_maxrows = mr;

mat->nbcolumns c;

mat->_sorted = s;

if (mrsnc>0){

int i;

pkint_t q;

mat->_pinit = _vector_alloc_int (mr*nc);

mat->p = (pkint_ts+)malloc(mr * sizeof (pkint_t«));

q = mat->_pini;

for (i=0;i<mrji++)(
mat->p[il=q;
g=gtnc;

return mat;

}

void backsubstitute(matrix_t+ con, int rank)
{

i il 3y

for (k=rank-1; k>=0; k-

3 = pk_cherni_intp(k];

for (i=0; i<k; i++) {

if (pkint_sgn(con->p[i][]]))
matrix_combine_rows (con,i,k,1,3);

}
for (i=k+l; i<con->nbrows; i++) {
if (pkint_sgn(con->p[i] [j]))
matrix_combine_rows (con,i,k,1,3);

T
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Certified static analysis BRGS0

Certified static analyses

A certified static analysis is an analysis whose implementation has been
formally proved correct using a proof assistant.

Static
analysis

Kernel — =) Proof —

assistant

> proof assistant : Coq

> we benefit from the extraction mechanism to prove executable analyser
» proof technique : abstract interpretation

> general enough to handle a broad range of static analysis
» applications to static analysis of bytecode programs

> to go beyond the state of the art about Sun’s bytecode verifier
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Abstract Interpretation

[Cousot&Cousot 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 00,
01, 02,03, 04, 05, 06, 07,.. . ]*

Abstract Interpretation is a method for designing approximate semantics of
programs.

» An approximate semantics mimics the concrete one, considering only a
fragment of the properties

> Application to static analysis : static analysers are computable
approximate semantics of programs

» A method to prove soundness of static analysis with respects to a
semantics

» A method to formally design static analysis by systematic abstraction of
the semantics of programs

» A method to compare precision between different analyses.

1See http://www.di.ens.fr/~cousot/
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Abstract Interpretation

[Cousot&Cousot 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 00,
01, 02,03, 04, 05, 06, 07,.. . ]*

Abstract Interpretation is a method for designing approximate semantics of
programs.

» An approximate semantics mimics the concrete one, considering only a
fragment of the properties

» Application to static analysis : static analysers are computable
approximate semantics of programs

» A method to prove soundness of static analysis with respects to a
semantics

» A method to formally design static analysis by systematic abstraction of
the semantics of programs

> A method to compare precision between different analyses.

We focus here on a fragment of the theory because we only prove soundness

1See http://www.di.ens.fr/~cousot/
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Certified static analysis [R{E(e[FTGToE

A flavor of abstract interpretation

Abstract interpretation executes programs on state properties instead of values.

Collecting semantics

> A state property is a subset in P(Z?)

of (x,y) values. x=0; f = 0 )
» When a point is reached for a second while (;l;<6) {
time we make an union with the if (2) {
previous property. { 1
vy = y+2;
{ }
i
{ )
x = x+1;
{ }
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A flavor of abstract interpretation

Abstract interpretation executes programs on state properties instead of values.

Collecting semantics

> A state property is a subset in P(Z?)
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A flavor of abstract interpretation

Abstract interpretation executes programs on state properties instead of values.

Collecting semantics

> A state property is a subset in P(Z?)

=0; v =20;
of (x,vy) values. *
() ((0,0),(1,0),(1,2),...}
» When a point is reached for a second while (x<6) {
time we make an union with the if (2) |
previous property. {(0,0),(1,0),(1,2),...}

y = y+2;
{(0,2),(1,2),(1,4),...}

{(0,0),(0,2),(1,0),(1,2),(1,4),...}
x = x+1;

{(1,0),(1,2),(2,0),(2,2),(2,4),...}

{(6,0),(6,2),(6,4),(6,6),...}
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A flavor of abstract interpretation

Abstract interpretation executes programs on state properties instead of values.
Collecting semantics

> A state property is a subset in P(Z?)

= 0; = 0;
of (x,y) values. * Y

x=0Ay=0

» When a point is reached for a second while (x<6) {

time we make an union with the if (2) |

previous property.

y = yt2;
Approximation .

> The set of manipulated properties

may be restricted to ensure x = x+1;

computability of the semantics.

Example : sign of variables }

> To stay in the domain of selected
properties, we over-approximate the
concrete properties.
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Introduction

Certified static analysis

A flavor of abstract interpretation

Abstract interpretation executes programs on state properties instead of values.

Collecting semantics

> A state property is a subset in P(Z?)
of (x,y) values.

» When a point is reached for a second
time we make an union with the
previous property.

Approximation

> The set of manipulated properties
may be restricted to ensure
computability of the semantics.
Example : sign of variables

> To stay in the domain of selected
properties, we over-approximate the
concrete properties.

x=0; yv=20;
x>20ANy=>0
while (x<6) {

if (?) |
x=>20ANy=>0
y = yt2;
x=0Ay>0
i
x=0Ay=>20
x = x+1;

x>0ANy=>0
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of (x,y) values.

» When a point is reached for a second
time we make an union with the
previous property.

Approximation

> The set of manipulated properties
may be restricted to ensure
computability of the semantics.
Example : sign of variables

> To stay in the domain of selected
properties, we over-approximate the
concrete properties.

x=0; yv=0;
x>20ANy=>0
while (x<6) {
it (?2) |
x=>20ANy=>0
y = yt2;
x>20ANy=>0
i
x>20ANy=>0
x = x+1;
x>0ANy=0
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Collecting semantics
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» When a point is reached for a second while (x<6) {

time we make an union with the if (?) |

previous property. x>0 ANy>=0

y = yt2;
Approximation - x20Ay20

> The set of manipulated properties x=20Ay=0

may be restricted to ensure x = x+1;
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Example : sign of variables }
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(@GR EREIVGE  Building a certified static analyser

Building a certified static analyser

> A puzzle with 8 pieces,

» Each piece interacts with its neighbors

David Pichardie Certified Proof Carrying Code by abstract interpretation

9/55



(@GR EREIVGE  Building a certified static analyser

Building a certified static analyser

2
O O
G
G
Example : JVM states
frame
7 call stack

local variables

pc,l
‘ I L operand stack

program point

10/55



(@GR EREIVGE  Building a certified static analyser

Building a certified static analyser

semantics
domains

» Each semantic sub-domain has its abstract counterpart

» An abstract domain is a lattice (Df,=,C, L, LI, M) without infinite strictly
increasing chains xo Cxy C---C - --

» First difficult point : how can we quickly develop big lattice structures in
Coq?
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Building a certified static analyser

semantics
domains

» Each semantic sub-domain has its abstract counterpart

» An abstract domain is a lattice (Df,=,C, L, LI, M) without infinite strictly
increasing chains xo Cxy C---C - --

» First difficult point : how can we quickly develop big lattice structures in
Coq?

> generic lattice library

David Pichardie Certified Proof Carrying Code by abstract interpretation 11/55



(OECTEERENEREIVEE  Building a certified static analyser

Building lattices in Coq
We propose a technique based on the new Coq module system (inspired by
the ML module system)

> Lattice requirements are collected in a module contract

David Pichardie Certified Proof Carrying Code by abstract interpretation 12/55
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Lattice contract

Module Type LatticeWf.
Parameter t : Set.

End Lattice.
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Certified static analysis

Lattice contract

Module Type LatticeWf.
Parameter t : Set.
Parameter eq : t — t — Prop.
Parameter eq.prop : ...
(» eq (=) is a computable equivalence relation )

End Lattice.
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Certified static analysis

Lattice contract

Module Type LatticeWf.

Parameter
Parameter
Parameter

Parameter
Parameter

End Lattice.

David Pichardie

t : Set.
eq : t — t — Prop.
eq_prop : ...
(» eq (=) is a computable equivalence relation )
order : t — t — Prop.
order_prop : ...
(+ order (C) is a computable order relation )

tract interpretation



Certified static analysis

Lattice contract

Module Type LatticeWf.

Parameter
Parameter
Parameter

Parameter
Parameter

Parameter
Parameter

End Lattice.

t : Set.
eq : t — t — Prop.
eq_prop : ...
(» eq (=) is a computable equivalence relation )
order : t — t — Prop.
order_prop : ...
(+ order (C) is a computable order relation )
join : t — t — t.
join_prop : ...
(» join (W) is a binary least upper bound x)
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Certified static analysis

Lattice contract

Module Type LatticeWf.

Parameter
Parameter
Parameter

Parameter
Parameter

Parameter
Parameter

Parameter
Parameter

End Lattice.

t : Set.
eq : t — t — Prop.
eq_prop : ...

(» eq (=) is a computable equivalence relation )
order : t — t — Prop.
order_prop : ...

(+ order (C) is a computable order relation )
join : t — t — t.
join_prop .

(» join (W) is a binary least upper bound x)
meet : t — t — t.
meet_prop : ...

(» meet (M) is a binary greatest lower bound =)
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Certified static analysis

Lattice contract

Module Type LatticeWf.

Parameter
Parameter
Parameter

Parameter
Parameter

Parameter
Parameter

Parameter
Parameter

Parameter

Parameter

End Lattice.

t : Set.
eq : t — t — Prop.
eq_prop : ...

(» eq (=) is a computable equivalence relation )
order : t — t — Prop.
order_prop : ...

(+ order (C) is a computable order relation )
join : t — t — t.
join_prop .

(» join (W) is a binary least upper bound x)
meet : t — t — t.
meet_prop : ...

(» meet (M) is a binary greatest lower bound =)
bottom : t.

(x bottom element to start iteration x)
bottom_-isbottom : V x : t, order bottom x.

David Pichardie
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Certified static analysis

Lattice contract

Module Type LatticeWf.

Parameter
Parameter
Parameter

Parameter
Parameter

Parameter
Parameter

Parameter
Parameter

Parameter
Parameter

Parameter
End Lattice.

t : Set.
eq : t — t — Prop.
eq_prop : ...

(» eq (=) is a computable equivalence relation )
order : t — t — Prop.
order_prop : ...

(+ order (C) is a computable order relation )
join : t — t — t.
join_prop .

(» join (W) is a binary least upper bound x)
meet : t — t — t.
meet_prop : ...

(» meet (M) is a binary greatest lower bound =)
bottom : t.

(x bottom element to start iteration x)
bottom_-isbottom : V x : t, order bottom x.
termination_property : well_founded O

tract interpretation



(OECTEERENEREIVEE  Building a certified static analyser

Building lattices in Coq
We propose a technique based on the new Coq module system (inspired by
the ML module system)

> Lattice requirements are collected in a module contract

» Various functors are proposed in order to build lattices by composition of
others
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(OECTEERENEREIVEE  Building a certified static analyser

Lattice functors

» Disjoint sum, linear sum, product

Module ProdLatWf (Pl :LatticeWf) (P2 :LatticeWf) :LatticeWf

with Definition t := Pl.t » P2.t

with Definition eq := fun x y : (Pl.t « P2.t) =>
Pl.eqg (fst x) (fst y) /A P2.eq (snd x) (snd y)

with Definition order := fun x y : (Pl.t % P2.t) =>

Pl.order (fst x) (fst y) /A P2.order (snd x) (snd y).

End ProdLatWf.

» List of elements from a lattice

» Map from a finite set of keys to a lattice (using efficient data-structures)

For each functor the most challenging proofs deals with the preservation of

the termination criterion.

David Pichardie Certified Proof Carrying Code by abstract interpretation



(OECTEERENEREIVEE  Building a certified static analyser

Building lattices in Coq
We propose a technique based on the new Coq module system (inspired by
the ML module system)

> Lattice requirements are collected in a module contract

» Various functors are proposed in order to build lattices by composition of
others

» The library deals as well with widening/narrowing
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Certified static analy Building a certified static analyser

Building lattices in Coq
We propose a technique based on the new Coq module system (inspired by
the ML module system)

> Lattice requirements are collected in a module contract

» Various functors are proposed in order to build lattices by composition of
others

» The library deals as well with widening/narrowing

Example :

Module AbSt :=
Product (Array (Array (List (Sum FiniteSet Constant))))
(Product (Array (Array (Array (List (Sum FiniteSet Constant)))))
(Array (Array (List (Sum FiniteSet Constant)))))
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(OECTEERENEREIVEE  Building a certified static analyser

post-fixpoint computation by widening/narrowing
v/A

[Cousot & Cousot 77]

b

decreasing |
iteration |
withA !

v

@ we compute the limit of
Xo = L, Xpp1 = X Vf (Xn)
@ we reach a post-fixpoint a of f

@ we compute the limit of
X = L, X1 = XA (xn)

© we reach a post-fixpoint a’ of f
/ incrg¢asing
" itération
with v

Ifp(f)Ea’'Ca
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Building lattices in Coq
We propose a technique based on the new Coq module system (inspired by
the ML module system)

> Lattice requirements are collected in a module contract

» Various functors are proposed in order to build lattices by composition of
others

» The library deals as well with widening/narrowing

Example :

Module AbSt :=
Product (Array (Array (List (Sum FiniteSet Constant))))
(Product (Array (Array (Array (List (Sum FiniteSet Constant)))))
(Array (Array (List (Sum FiniteSet Constant)))))
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Building a certified static analyser

Building a certified static analyser

semantics logic abstract
domains links domains

» Each abstract value represents a property on concrete values
» This correspondence is formalised by a monotone concretisation function

Y (‘Dﬂ/ E) —m (p(@),C)
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Building a certified static analyser

Building a certified static analyser

semantics logic abstract
domains links domains

» Each abstract value represents a property on concrete values
» This correspondence is formalised by a monotone concretisation function

Y (‘Dﬂ/ E) —m (p(@),C)

x C y(x*) means “x* is a correct approximation of x”
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(@GR EREIVGE  Building a certified static analyser

Building a certified static analyser

semantics abstract
domains domains

semantic
rules

» operational semantics - —p - between states

» collecting semantics : [P]] ={s| 35y € Sinit, S0 —p 5 |

> we want to compute a correct approximation of [P]
> asound invariant s* on the reachable states : [P] C y(s%)

David Pichardie Certified Proof Carrying Code by abstract interpretation
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Certified static analysis

Example : JVM operational semantics

instructionAtp(m, pc) = push ¢
(h, (m,pc,1,s),sf) — (h, (m,pc+1,1,c:s),sf))

instructionAtp(m, pc) = invokevirtual mjy
/

m = methodLookup( i, h(loc))
V = o Ur\bArguments( d)
{h, (m,pc,1,loc : s),sf) — (h, (m',1,V,¢), (m,pc,l,s) : sf))

David Pichardie Certified Proof Carrying Code by abstract interpretation



(OECTEERENEREIVEE  Building a certified static analyser

Building a certified static analyser

semantics i abstract
domains i domains

semantic analyse
rules specification

» the analysis is specified as a solution of a post fixpoint problem
Fi(s*) CF &
> after partitioning : constraint system

filsh,... ) Ccf s

filsh, ... sr”l cé s

David Pichardie Certified Proof Carrying Code by abstract interpretation 23/55



Building a certified static analyser

Building a certified static analyser

semantics abstract
domains domains

semantic soundness analyse
rules proof specification

» easy proof, but tedious

» one proof by instruction : a long work for real langages

David Pichardie Certified Proof Carrying Code by abstract interpretation 24/55



(OECTEERENEREIVEE  Building a certified static analyser

Building a certified static analyser

semantics abstract
domains domains

semantic soundness analyse
rules proof specification

» collects all constraints in a program
> generic tool

constraint
generation

Certified Proof Carrying Code by abstract interpretation
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(OECTEERENEREIVEE  Building a certified static analyser

Building a certified static analyser

semantics abstract fixpoint
domains domains solvers

semantic soundness analyse constraint
rules proof specification generation

Two techniques of iterative computation

» traditional least (post)-fixpoint computation

L Fh(L) = F57 (L) — - Ifp(FY)

» post-fixpoint computation by widening/narrowing with chaotic iterations
In the two cases, a generic tool

David Pichardie Certified Proof Carrying Code by abstract interpretation 26/55



Certified static analysis

Building a certified static analyser

abstract
domains

semantics
domains

semantic soundness
rules proof

analyse
specification

Final result

analyse V p:program, { s:abstate |

In Coq:
In Caml :

analyse program — abstate

David Pichardie Certified Proof Carrying Code by abstract interpretation

fixpoint
solvers

constraint
generation

sem(P) C gamma (P,s) }



(OECTEERENEREIVEE  Building a certified static analyser

Case studies

The previous framework has been used to develop several analyses

© A class analysis for a representative subset of bytecode Java
[ESOP’04,TCS'04]

© A memory usage analysis for a representative subset of bytecode Java
[FM’05]

@ An interval analysis for the imperative fragment of bytecode Java
[TCS06]

But we are here a little too brave : termination is not mandatory to establish
the soundness of an analysis

David Pichardie Certified Proof Carrying Code by abstract interpretation 28/55
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© From certified static analysis to certified PCC
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From certified static analysis to certified PCC

Checking a property with abstract interpretation

If we want to ensure that a program P satisfies a property ¢
[PIC$?
@ we compute a post-fixpoint of Ff, (over-approximation of [P])
vst, Fh(s*) C s = [P] C v(s?)
@ we compute an under-approximation ¢* of ¢
Y6 S o
@ we check that y(s) implies v(dh) using an abstract order check

ot Cf ot

@ Dby transitivity we conclude P satisfies ¢

[PI C v(s*) Cv(d*) C ¢

David Pichardie Certified Proof Carrying Code by abstract interpretation 30/55



From certified static analysis to certified PCC

PCC by abstract interpretation

Producer Consumer
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From certified static analysis to certified PCC

PCC by abstract interpretation

Producer Consumer

checks if F¥ (pf) C pf and pf C ¢*
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From certified static analysis to certified PCC

PCC by abstract interpretation

Producer Consumer

computes pf such that F¥(pf) C pf and pf C *

checks if F# (pf) C pf and pf C ¢*
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Certified PCC by abstract interpretation

Producer Consumer
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Certified PCC by abstract interpretation

Producer Consumer
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From certified static analysis to certified PCC

Certified PCC by abstract interpretation

Producer Consumer

certified (post-fixpoint) verifier

(Coq file)

checks if F¥ (pf) C pf and pf C ¢
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From certified static analysis to certified PCC

Certified PCC by abstract interpretation

Producer Consumer

certified (post-fixpoint) verifier

(Coq file)

et

-

checks if F¥ (pf) C pf and pf C ¢
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From certified static analysis to certified PCC

Certified PCC by abstract interpretation

Producer Consumer

certified (post-fixpoint) verifier

(Coq file)

computes pf such that F*(pf) C pf and pf C ¢

et

checks if F¥ (pf) C pf and pf C ¢
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From certified sta ysis to certified PCC

Certified PCC by abstract interpretation

Producer Consumer

certified (post-fixpoint) verifier

(Coq file)

computes pf such that F*(pf) C pf and pf C ¢

checks if F¥ (pf) C pf and pf C ¢
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A case study : array-bound checks polyhedral analysis
(5 ) y : array poly y
@ Polyhedral abstract interpretation
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A case study : array-bound checks polyhedral analysis [IBZO}Z e IEBIEL AUSIEIIEEGTT

Polyhedral abstract interpretation

Automatic discovery of linear restraints among variables of a program.
P. Cousot and N. Halbwachs. POPL'78.

i

Patrick Cousot Nicolas Halbwachs

Polyhedral analysis seeks to discover invariant linear equality and inequality
relationships among the variables of an imperative program.

David Pichardie Certified Proof Carrying Code by abstract interpretation 34/55



y-bound checks polyhedral analy Polyhedral abstract interpretation

Convex polyhedra

A convex polyhedron can be defined algebraically as the set of solutions to a
system of linear inequalities.

Geometrically, it can be defined as a finite intersection of half-spaces.

David Pichardie

Certified Proof Carrying Code by abstract interpretation
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A case study : array-bound checks polyhedral analysis

Polyhedral analysis

State properties are over-approximated by convex polyhedra in Q2.
x =0; y=0;

while (x<6) {
if (?) |

y = y+2;

X = x+1;
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A case study : array-bound checks polyhedral analysis

Polyhedral analysis

State properties are over-approximated by convex polyhedra in Q2.
x =0; y=0;
{x=0 A y=0}

while (x<6) {
if (?) |
{x=0ANy=0}
y = y+2;
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Polyhedral analysis

State properties are over-approximated by convex polyhedra in Q2.
x =0; y=0;
{x=0 A y=0}

while (x<6) {
it (?) |
{x=0ANy=0}
y = y+2;
{x=0ANy=2}
bi
{x=0ANAy=0W{x=0Ay=2}

.
At junction point, we over
approximate union by a
convex union.

X = x+1;
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Polyhedral analysis

State properties are over-approximated by convex polyhedra in Q2.
x =0; y=0;
{x=0 A y=0}

while (x<6) {
if (?) |
{x=0ANy=0}
y = y+2;
{x=0ANy=2}
bi
{x=0AN0<y<2}

At junction point, we over
approximate union by a
convex union.

X = x+1;
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A case study : array-bound checks polyhedral analysis

Polyhedral analysis

State properties are over-approximated by convex polyhedra in Q2.
x =0; y=0;
{x=0 A y=0}

while (x<6) {

it (?) |
{x=0ANy=0}
y = y+2;
{x=0ANy=2}
i
® {x=0AN0<y<2}
X = x+1;

x=1A0<y<2}

David Pichardie Certified Proof Carrying Code by abstract interpretation



A case study : array-bound checks polyhedral analysis

Polyhedral analysis

State properties are over-approximated by convex polyhedra in Q2.
x =0; y=0;
{x=0ANAy=0w{x=1 A0y <2}

while (x<6) {

it (?) |
{x=0ANy=0}
y = y+2;
{x=0ANy=2}
i
—4 {x=0AN0<y<2}
X = x+1;

x=1A0<y<2}
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A case study : array-bound checks polyhedral analysis

Polyhedral analysis

State properties are over-approximated by convex polyhedra in Q2.
x =0; y=0;
x<TAO0SY <2%)

while (x<6) {

it (?) |
{x=0ANy=0}
y = y+2;
{x=0ANy=2}
i
x=0AN0<y<2}
X = x+1;

x=1A0<y<2}
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A case study : array-bound checks polyhedral analysis

Polyhedral analysis

State properties are over-approximated by convex polyhedra in Q2.
x =0; y=0;
(x<TAO0SY <2%)

while (x<6) {

if () |
(x<1A0<y <2x)
y = y+2;
{x=0ANy=2}
}i
(x=0AN0<y<2}
X = x+1;

x=1A0<y<2}
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A case study : array-bound checks polyhedral analysis

Polyhedral analysis

State properties are over-approximated by convex polyhedra in Q2.
x =0; y=0;
(x<TAO0SY <2%)

while (x<6) {

if (?) |
x<T A0Sy <2x)
y = y+2;
x<1TA2<y<2x+2)
}i
x=0AN0<y<2}
x = x+1;

x=1A0<y<2}
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A case study : array-bound checks polyhedral analysis

Polyhedral analysis

State properties are over-approximated by convex polyhedra in Q2.
x =0; y=0;
(x<TAO0SY <2%)

while (x<6) {

if (?) |

=<1 A0y <2¢)

y = y+2;

{x<1TA2<y<2x+2}
i

x<T A0Sy <2%)

W{x <1 A2<y <2x+2)

X = x+1;

x=1A0<y<2}
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A case study : array-bound checks polyhedral analysis

Polyhedral analysis

State properties are over-approximated by convex polyhedra in Q2.
x =0; y=0;
(x<TAO0SY <2%)

while (x<6) {

if (2) {
x<T A0Sy <2x)
y = y+2;
{x<1 A2y <2x+2}
}i
0<x<TI A0Sy <2x+2}
x = x+1;

x=1A0<y<2}
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A case study : array-bound checks polyhedral analysis

Polyhedral analysis

State properties are over-approximated by convex polyhedra in Q2.

x =0; y=0;
(x<TAO0SY <2%)

while (x<6) {

if (?) |
=<1 A0y <2¢)
y = y+2;
{x<1TA2<y<2x+2}
i
0<x<TIA0Ly <2x+2}
X = x+1;

I<x<2A0<y<2)
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A case study : array-bound checks polyhedral analysis

Polyhedral analysis

State properties are over-approximated by convex polyhedra in Q2.
x =0; y=0;
#<TAO0SY 2%}
vi{ix<2 N0y <2x)
while (x<6) {

if (?) |

x<1T A0y <2x}
y = y+2;

(x<1A2<y <2x+2)

}i
O<x<T A0Sy <2x+2}

At loop headers, we use
X = x+1;

heuristics (widening) to

ensure finite convergence. ASxS2A0SYy <2
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A case study : array-bound checks polyhedral analysis

Polyhedral analysis

State properties are over-approximated by convex polyhedra in Q2.
x=0; y=0;
{0 <y <2x}

while (x<6) {
if (?) |
x<T A0Sy <2x)
y = y+2;
{x<1 A2y <2x+2}
}i

0<x<1TA0Ly <2x+2}

At loop headers, we use
heuristics (widening) to
ensure finite convergence.

x = x+1;
I1<x<2AN0<y <2x)

David Pichardie od Pro ng Code by abstract interpretation



A case study : array-bound checks polyhedral analysis

Polyhedral analysis

State properties are over-approximated by convex polyhedra in Q2.
x =0; y=0;
{0 <y <2}

while (x<6) {
it (?) |
{0<y<2x A x <5}
y = y+2;
2<y<2x+2 AN x5}

By propagation we obtain a
post-fixpoint

}i
0y <2x+2 AN 0<x <5}

X = x+1;
OSy<2x AT<x<6)

0<y<2x A6}

David Pichardie Certified Proof Carrying Code by abstract interpretation



A case study : array-bound checks polyhedral analysis

Polyhedral analysis

State properties are over-approximated by convex polyhedra in Q2.
x =0; y=0;
{0<y<2x Ax<6}

while (x<6) {
it (?) |
{0<y<2x A x <5}
y = y+2;
2<y<2x+2 AN x5}

By propagation we obtain a
post-fixpoint which is
enhanced by downward

. . }i
iteration.

0<y<2x+2 AN 0<x <5}

X = x+1;
OSy<2x AT<x<6)

{0<y<2x N\ 6=x}
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A case study : array-bound checks polyhedral analysis

Polyhedral analysis

A more complex example.
x = 0; = A,

y
A<y <

while
if

(x<N) {
(?) |

A<y <

The analysis accepts to Yy = y+2;
replace some constants by

parameters. bi
A<y

X = x+1;

A<y

A<y <

{A+2<

<2x+A+2AN0<x<N

<2x+AAN1<x<

<2x+AANx <N}

2x+A A x<N—1}
y<2x+A+2 A x<N—1}

—1}

N}

2x + A N N =x}
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A case study : array-bound checks polyhedral analysis

The four polyhedra operations

>» W e P, xP, — P, : convex union

> over-approximates the concrete
union in junction points

» NeP, xP, — P, :intersection

> over-approximates the concrete
intersection after a conditional
intruction

> [x:=¢] € P, — P, : affine
transformation

» over-approximates the affectation of
a variable by a linear expression

» vel, xP, — P, :widening

> ensures (and accelerate)
convergence of (post-)fixpoint
iteration

> includes heuristics to infer loop
invariants

David Pichardie

Polyhedral abstract interpretation

x =0; y=0;
Po = [y := 0][x := 0(Q@*) v P,

while (x<6) {
it (?2) |
Pl :Pom{x<6}
y = yt+2;
Py =y :=y+2](P)
i
P3; =P,y P,
X = x+1;

P4 = [[X =x+ 1]](P3}

Psngﬁ{x>6}
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Polvhed:
P

1 abstract interp

A case study : array-bound checks polyhedral analysis

Library for manipulating polyhedra

» Parma Polyhedra Library? (PPL), NewPolka : complex C/C++ libraries
> They rely on the Double Description Method
> polyhedra are managed using two representations in parallel

> by set of inequalities

x> —1
_ 2| X—y=-3
P = (X,y)EQ 2x+y2_2
x+2y > —4

> by set of generators

2
P = { A1S1 + A2sy + Aszsz + wiry + Horp € Q2 A A2 Az b1 b2 €R }

AM+A+A3=1
> operations efficiency strongly depends on the chosen representations, so
they keep both

> We really don’t want this in a Trusted Computes Base !
» But we really don’t want to certify this C/C++ libraries neither!

2Previous tutorial on polyhedra partially comes from http://www.cs.unipr.it/ppl/
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A case study : array-bound checks polyhedral analysis

Outline

@ A case study : array-bound checks polyhedral analysis

@ Certified polyhedral abstract interpretation
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A case study : array-bound checks polyhedral analysis @SRRI L EIRI S E ST,

Polyhedra in a PCC framework

Join work with F. Besson, T. Jensen and T. Turpin

Develop a checker of analysis results
» minimize the number of operations to certify
» avoid (some of the most) costly operations

The checker will receive a post-fixpoint + a certificate of certain polyhedra
inclusions to be verified by the checker

We develop one checker for a rich abstract domain based on Farkas lemma

Can accommodate invariants that are obtained
> automatically (intervals, polyhedra,...)
» by user-annotation (polynomials, .. .)

David Pichardie Certified Proof Carrying Code by abstract interpretation
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LR v eV Tt R U SR LRI STEREINC Tl Certified polyhedral abstract interpretation

A minimal polyhedral tool-kit
For efficiency and simplicity,

» Polyhedra are represented in constraint form prefixed by existentially
quantified variables

» Constraints are never normalised
Abstract operators are much simpler :
» Assignments do not trigger quantifier elimination;

[x:=e](P) =3x’, Plx’/x] N\ x =e[x'/x]

> Intersection is just syntactic union of constraints ;

> (Over-approximations) of Convex Hulls are given as untrusted
invariants;

isUpperBound(P,Q,UB) =P C UBAQLC UB

» Polyhedra inclusion is guided by a certificate ;

isIncluded(P,Q, Cert) = P C Q
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A case study : array-bound checks polyhedral analysis

Certified PCC by abstract interpretation

Producer Consumer

certified (post-fixpoint) verifier

(Coq file)
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A case study : array-bound checks polyhedral analysis

Certified PCC by abstract interpretation

Producer Consumer

certified (post-fixpoint) verifier

(Coq file)
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LRI R R T RO CPSIN R  TEREIVE I Certified polyhedral abstract interp

Checking polyhedra inclusion using certificates

» Inclusion reduces to a conjunction of emptiness problems
PC{p>cy,.. qm>cm}

if and only if
PU{—pZz—a+1}=0N...APU{—Gn = —cn+1}=0

» Each emptiness reduces to unsatisfiability of linear constraints

M-, An X1 by
vxlr---/xn/_‘ : =
A1y rAmn Xn by
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A case study : array-bound checks polyhedral analysis @SRRI L EIRI S E ST,

Unsatisfiability certificates

Lemma (Farkas’s Lemma (Variant))
Let A e Q™" and b € Q".

Vxe Q",—(A-x>D)
if and only if

At -cert =0
bt -cert >0

A(cert € Q™), cert > 0, such that {

Soundness of certificates is easy (<)

Démonstration.

WV

Suppose A-x2>D
Since cert > 0 we have (A -x)" - cert > b’ - cert.
Now to(Af - cert) = (xf - AY) - cert = (A - x)' - cert.

x
Hence xt . (A - cert) > b - cert.
Therefore X
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LRI R R T RO CPSIN R  TEREIVE I Certified polyhedral abstract interp

Certificate checking

Example
Using the certificate cert = (1;1;5), check that
1 1 X 2
—1 4 |- < ) > 1 | has no solutions.
0 -1 Y 1
Checking algorithm.

1 1 \! 1
>Check(—1 4>.<1):(

0 1 5

2\t 1
’CheCk<}>’(é>>0'

Checking time complexity is quadratic (matrix-vector product).
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A case study : array-bound checks polyhedral analysis @SRRI L EIRI S E ST,

Certificate generation by linear programming

Let A € Q™" and b € QQ", the set of unsatisfiability certificates is defined as
ty

c=>0
Cert={c| b-c>0
Al.c=0

Finding an extremal certificate is a linear programming problem
min{c' - 1| c € Cert}

that can be solved

» Over NN, by linear integer programming algorithms
(Bad complexity, smallest certificate)

> Over Q, by the Simplex (or interior point methods)
(Good complexity and small certificate — in practise)

David Pichardie Certified Proof Carrying Code by abstract interpretation
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A case study : array-bound checks polyhedral analysis

Outline

@ A case study : array-bound checks polyhedral analysis

@ Application : a polyhedral bytecode analyser
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Application : a polyhedral bytecode analyser

We have applied this technique for a Java-like bytecode language with

v

(unbounded) integers,

v

dynamically created (unidimensional) array of integers,

v

static methods (procedures),

v

static fields (global variables).

Linear invariant are used to statically checks that all array accesses are within
bounds.

It allows to remove the dynamic check used by standard JVM without risk of
buffer overflow attack.

In practice we could only try to detect statically some valid array accesses and
keep dynamic checks for the other accesses.
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A case study : array-bound checks polyhedral analysis

Example : binary search

static int bsearch(int key, int[] vec) {
int low = 0, high = vec.length - 1;
while (0 < high-low) {
int mid = (low + high) / 2;
if (key == vec[mid]) return mid;

else if (key < vec[mid]) high = mid - 1;
else low = mid + 1;

return -1;

David Pichardie nterpretation



A case study Ve gotite RUTTU R ICIEVEINEG O Application : a polyhedral bytecode analyser

Example : binary search

// PRE: 0 < |veco]
static int bsearch(int key, int[] vec) {
// (I1) key, = key A |vecqo| = |vec| A 0 < |vecq]

int low = 0, high = vec.length - 1;

// (I2) key, =key A |veco| = |vec| A0 < low < high + 1 < |veco|

while (0 < high-low) {

// (I3) key, =key A |veco| = |vec| A0 < low < high < |veco|
int mid = (low + high) / 2;

// (I1) key, = keyAl|veco| = |vec|AO < low < high < |vecg|Alow+high—1 < 2-mid < lo
if (key == vec[mid]) return mid;
else if (key < vec[mid]) high = mid - 1;
else low = mid + 1;

// (Is) key, = key A |veco| = |vec| A =243 -1low < 2-high +mid A —1 4+ 2-low < hi
mid A =1 + low < mid < 14 high Ahigh < low 4+ mid A1+ high < 2-1low+mid A 1+ low A
|veco| + high A 2 < |vecg| A 2 + high + mid < |vecq| + low

}

// (Is) keyy =key A |veco| = |vec| Alow —1 < high < low A0 < low Ahigh < |vecq]

return -1;

} // POST: —1 <res < |vec|

This is a correct post-fixpoint but there is too many informations (too precise) !
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A case study Ve gotite RUTTU R ICIEVEINEG O Application : a polyhedral bytecode analyser

Example : binary search

// PRE: True
static int bsearch(int key, int[] vec) {
// (I1) |veco| = |vec| A0 < |veco]
int low = 0, high = vec.length - 1;
// (I%) |veco| = |vec| A0 < low < high + 1 < |vecq|
while (0 < high-low) {
// (I4) |veco| = |vec| A0 < low < high < |veco]
int mid = (low + high) / 2;
/] (I}) |vec| — |veco| =0 Alow > 0 Amid — low > OA
2-high—2-mid—1>0A |vecg| —high—1>0
if (key == vec[mid]) return mid;
else if (key < vec[mid]) high = mid - 1;
else low = mid + 1;
// (It) |veco| = |vec| A =1+ low <high A0 < lowA5+2-high < 2-|vec|
}

// (Ig) 0< |veco
return -1;

} // POST: —1<res < |veco]

This one is less precise but sufficient to ensure the security policy.
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A case study : array-bound checks polyhedral analysis

Some preliminary benchmarks

Application : a polyhedral bytecode analyser

class | certificates checking time
Program before | after | before | after
BSearch 515 22 12| 0.005 | 0.007
BubbleSort | 528 15 14 | 0.0005 | 0.0003
HeapSort 858 72 32 | 0.053 | 0.025
QuickSort 833 87 44 0.54 0.25

Class files are given in bytes, certificates in number of constraints, time in

seconds.

The two checking times in the last column give the checking time with and

without fixpoint pruning.

David Pichardie
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v y y-bound checks polyhedral analy Application : a polyhedral bytecode analyser
Foudational PCC by reflection

The generated certificate is a compressed post-fixpoint
» small certificate,
» but very adhoc checker.

In Foudational PCC, you want to obtain a machine-checked proof of Safe(p)
» general checker (as Coq)

> but the proof A-term may be bigger than the adhoc certificate.

This can be done using reflection because we prove

checker_correct:

V (p : program) (cert : positive), checker p cert = true — safe p

With a foudational proof of the same size as the adhoc certificate !

checker_correct prog cert (refl_equal true)
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