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Certified static analysis Introduction

Static program analysis

The goals of static program analysis
I To prove properties about the run-time behaviour of a program
I In a fully automatic way
I Without actually executing this program

Solid foundations for designing an analyser
I Abstract Interpretation gives a guideline

I to formalise analyses
I to prove their soundness with respect to the semantics of the programming

language
I Resolution of constraints on lattices by iteration and symbolic

computation
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So what’s the problem ?

Proof

λJ • let Jt ′ = λl ∈ inPJPK•((l = atPJStK ? JatPJStK ṫAbexpJBK(J`) ¿ Jl )) in
let Jt ′′ = APostJStK(Jt ′) in
λl ∈ inPJPK•((l = `′ ? Jt ′′

`′ ṫ Jt ′′
afterPJStK ¿ Jt ′′

l ))

(119)

Observe that monotony follows by induction hypothesis and the locality (113) and dependence
(114) properties by induction hypothesis and the labelling condition (59).

5.4 Since the case of theelse branch of the conditional is similar to (5.3), we can now
come back to the calculational design of APostJif B then St else Sf fi K as an upper
approximation of

˙̈αJPK(PostJif B then St else Sf fi K)
= Hdef. (110) of ˙̈αJPKI
α̈JPK B PostJif B then St else Sf fi K B γ̈ JPK

= Hdef. (103) of PostI
α̈JPK B post[τ ?Jif B then St else Sf fi K] B γ̈ JPK

= Hbig step operational semantics (93)I
α̈JPK B post[(16JPK ∪ τ B) B τ ?JStK B (16JPK ∪ τ t) ∪ (16JPK ∪ τ B̄) B τ ?JSf K B (16JPK ∪
τ f )] B γ̈ JPK

= HGalois connection (98) so that post preserves joinsI
α̈JPK B (post[(16JPK ∪ τ B) B τ ?JStK B (16JPK ∪ τ t )] ∪̇
post[(16JPK ∪ τ B̄) B τ ?JSf K B (16JPK ∪ τ f )]) B γ̈ JPK

= HGalois connection (106) so thatα̈JPK preserves joinsI
(α̈JPK B post[(16JPK ∪ τ B) B τ ?JSt K B (16JPK ∪ τ t )] B γ̈ JPK) ˙̈t (α̈JPK B
post[(16JPK ∪ τ B̄) B τ ?JSf K B (16JPK ∪ τ f )] B γ̈ JPK)
˙̈v Hlemma (5.3) and similar one for theelse branchI
λJ • let Jt ′ = λl ∈ inPJPK•((l = atPJStK ? JatPJStK ṫAbexpJBK(J`) ¿ Jl )) in

let Jt ′′ = APostJStK(Jt ′) in
λl ∈ inPJPK•((l = `′ ? Jt ′′

`′ ṫ Jt ′′
afterPJStK ¿ Jt ′′

l ))

ẗ
let J f ′ = λl ∈ inPJPK•((l = atPJSf K ? JatPJSf K ṫAbexpJT(¬B)K(J`) ¿ Jl )) in

let J f ′′ = APostJSf K(J f ′) in

λl ∈ inPJPK•((l = `′ ? J f ′′
`′ ṫ J f ′′

afterPJSf K ¿ J f ′′
l ))

(120)

= Hby grouping similar termsI
λJ • let Jt ′ = λl ∈ inPJPK•((l = atPJStK ? JatPJStK ṫAbexpJBK(J`) ¿ Jl ))

andJ f ′ = λl ∈ inPJPK•((l = atPJSf K ? JatPJSf K ṫAbexpJT(¬B)K(J`) ¿ Jl )) in
let Jt ′′ = APostJStK(Jt ′)
andJ f ′′ = APostJSf K(J f ′) in

λl ∈ inPJPK•((l = `′ ? Jt ′′
`′ ṫ Jt ′′

afterPJStK ṫ J f ′′
`′ ṫ J f ′′

afterPJSf K ¿ Jt ′′
l ṫ J f ′′

l ))

= Hby locality (113) and labelling scheme (59) so that in particularJt ′′
`′ = Jt ′

`′ = Jt
`′ = J f

`′

= J f ′
`′ = J f ′′

`′ and APostJStK and APostJSf K do not interfereI

69

c©P.Cousot

Implementation

matrix_t* _matrix_alloc_int(const int mr, const int nc)
{

matrix_t* mat = (matrix_t*)malloc(sizeof(matrix_t));
mat->nbrows = mat->_maxrows = mr;
mat->nbcolumns = nc;
mat->_sorted = s;
if (mr*nc>0){
int i;
pkint_t* q;
mat->_pinit = _vector_alloc_int(mr*nc);
mat->p = (pkint_t**)malloc(mr * sizeof(pkint_t*));
q = mat->_pinit;
for (i=0;i<mr;i++){

mat->p[i]=q;
q=q+nc;

}}
return mat;

}

void backsubstitute(matrix_t* con, int rank)
{
int i,j,k;
for (k=rank-1; k>=0; k--) {
j = pk_cherni_intp[k];
for (i=0; i<k; i++) {

if (pkint_sgn(con->p[i][j]))
matrix_combine_rows(con,i,k,i,j);

}
for (i=k+1; i<con->nbrows; i++) {

if (pkint_sgn(con->p[i][j]))
matrix_combine_rows(con,i,k,i,j);

}}
}

c©B.Jeannet
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andJ f ′ = λl ∈ inPJPK•((l = atPJSf K ? JatPJSf K ṫAbexpJT(¬B)K(J`) ¿ Jl )) in
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l ṫ J f ′′

l ))

= Hby locality (113) and labelling scheme (59) so that in particularJt ′′
`′ = Jt ′

`′ = Jt
`′ = J f

`′

= J f ′
`′ = J f ′′

`′ and APostJStK and APostJSf K do not interfereI

69

c©P.Cousot

Implementation

matrix_t* _matrix_alloc_int(const int mr, const int nc)
{

matrix_t* mat = (matrix_t*)malloc(sizeof(matrix_t));
mat->nbrows = mat->_maxrows = mr;
mat->nbcolumns = nc;
mat->_sorted = s;
if (mr*nc>0){
int i;
pkint_t* q;
mat->_pinit = _vector_alloc_int(mr*nc);
mat->p = (pkint_t**)malloc(mr * sizeof(pkint_t*));
q = mat->_pinit;
for (i=0;i<mr;i++){

mat->p[i]=q;
q=q+nc;

}}
return mat;

}

void backsubstitute(matrix_t* con, int rank)
{
int i,j,k;
for (k=rank-1; k>=0; k--) {
j = pk_cherni_intp[k];
for (i=0; i<k; i++) {

if (pkint_sgn(con->p[i][j]))
matrix_combine_rows(con,i,k,i,j);

}
for (i=k+1; i<con->nbrows; i++) {

if (pkint_sgn(con->p[i][j]))
matrix_combine_rows(con,i,k,i,j);

}}
}

c©B.Jeannet

Do the two parts talk about the same ?



So what’s the problem ?

Proof

λJ • let Jt ′ = λl ∈ inPJPK•((l = atPJStK ? JatPJStK ṫAbexpJBK(J`) ¿ Jl )) in
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Certified static analysis Introduction

Certified static analyses

A certified static analysis is an analysis whose implementation has been
formally proved correct using a proof assistant.

Static
analysis

Proof
assistantKernel

I proof assistant : Coq
I we benefit from the extraction mechanism to prove executable analyser

I proof technique : abstract interpretation
I general enough to handle a broad range of static analysis

I applications to static analysis of bytecode programs
I to go beyond the state of the art about Sun’s bytecode verifier

David Pichardie Certified Proof Carrying Code by abstract interpretation 5 / 55



Certified static analysis Introduction

Abstract Interpretation
[Cousot&Cousot 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 00,
01, 02, 03, 04, 05, 06, 07,. . . ]1

Abstract Interpretation is a method for designing approximate semantics of
programs.

I An approximate semantics mimics the concrete one, considering only a
fragment of the properties

I Application to static analysis : static analysers are computable
approximate semantics of programs

I A method to prove soundness of static analysis with respects to a
semantics

I A method to formally design static analysis by systematic abstraction of
the semantics of programs

I A method to compare precision between different analyses.

We focus here on a fragment of the theory because we only prove soundness

1See http://www.di.ens.fr/∼cousot/
David Pichardie Certified Proof Carrying Code by abstract interpretation 6 / 55
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Certified static analysis Introduction

A flavor of abstract interpretation
Abstract interpretation executes programs on state properties instead of values.

Collecting semantics

I A state property is a subset in P(Z2)

of (x,y) values.
I When a point is reached for a second

time we make an union with the
previous property.

Approximation

I The set of manipulated properties
may be restricted to ensure
computability of the semantics.
Example : sign of variables

I To stay in the domain of selected
properties, we over-approximate the
concrete properties.

x = 0; y = 0;

{

(0, 0), (1, 0), (1, 2), . . .

}

while (x<6) {

if (?) {

{

(0, 0), (1, 0), (1, 2), . . .

}

y = y+2;

{

(0, 2), (1, 2), (1, 4), . . .

}

};

{

(0, 0), (0, 2), (1, 0), (1, 2), (1, 4), . . .

}

x = x+1;

{

(1, 0), (1, 2), (2, 0), (2, 2), (2, 4), . . .

}

}
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Outline

1 Certified static analysis
Introduction
Building a certified static analyser

2 From certified static analysis to certified PCC

3 A case study : array-bound checks polyhedral analysis
Polyhedral abstract interpretation
Certified polyhedral abstract interpretation
Application : a polyhedral bytecode analyser
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Certified static analysis Building a certified static analyser

Building a certified static analyser

I A puzzle with 8 pieces,
I Each piece interacts with its neighbors
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Building a certified static analyser

semantics
domains

Example : JVM states

〈〈h, 〈m, pc, l, v :: s〉, sf 〉〉
heap

method
program point

local variables

operand stack

frame
call stack

David Pichardie Certified Proof Carrying Code by abstract interpretation 10 / 55



Certified static analysis Building a certified static analyser

Building a certified static analyser

semantics
domains

abstract
domains

I Each semantic sub-domain has its abstract counterpart
I An abstract domain is a lattice

(
D], =,v,⊥,t,u

)
without infinite strictly

increasing chains x0 @ x1 @ · · · @ · · ·
I First difficult point : how can we quickly develop big lattice structures in

Coq ?

I generic lattice library
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Certified static analysis Building a certified static analyser

Building lattices in Coq
We propose a technique based on the new Coq module system (inspired by
the ML module system)

I Lattice requirements are collected in a module contract

I Various functors are proposed in order to build lattices by composition of
others

I The library deals as well with widening/narrowing

Example :

Module AbSt :=
Product (Array (Array (List (Sum FiniteSet Constant))))
(Product (Array (Array (Array (List (Sum FiniteSet Constant)))))

(Array (Array (List (Sum FiniteSet Constant)))))
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Certified static analysis Building a certified static analyser

Lattice contract

Module Type LatticeWf.

Parameter t : Set.
Parameter eq : t → t → Prop.
Parameter eq prop : ...

(* eq (=) is a computable equivalence relation *)
Parameter order : t → t → Prop.
Parameter order prop : ...

(* order (v) is a computable order relation *)
Parameter join : t → t → t.
Parameter join prop : ...

(* join (t) is a binary least upper bound *)
Parameter meet : t → t → t.
Parameter meet prop : ...

(* meet (u) is a binary greatest lower bound *)
Parameter bottom : t.

(* bottom element to start iteration *)
Parameter bottom is bottom : ∀ x : t, order bottom x.
Parameter termination property : well founded A

End Lattice.
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Certified static analysis Building a certified static analyser

Building lattices in Coq
We propose a technique based on the new Coq module system (inspired by
the ML module system)

I Lattice requirements are collected in a module contract

I Various functors are proposed in order to build lattices by composition of
others

I The library deals as well with widening/narrowing

Example :

Module AbSt :=
Product (Array (Array (List (Sum FiniteSet Constant))))
(Product (Array (Array (Array (List (Sum FiniteSet Constant)))))

(Array (Array (List (Sum FiniteSet Constant)))))

David Pichardie Certified Proof Carrying Code by abstract interpretation 14 / 55



Certified static analysis Building a certified static analyser

Lattice functors

I Disjoint sum, linear sum, product
Module ProdLatWf (P1 :LatticeWf) (P2 :LatticeWf) :LatticeWf

with Definition t := P1.t * P2.t
with Definition eq := fun x y : (P1.t * P2.t) =>
P1.eq (fst x) (fst y) ∧ P2.eq (snd x) (snd y)

with Definition order := fun x y : (P1.t * P2.t) =>
P1.order (fst x) (fst y) ∧ P2.order (snd x) (snd y).

...
End ProdLatWf.

I List of elements from a lattice
I Map from a finite set of keys to a lattice (using efficient data-structures)

For each functor the most challenging proofs deals with the preservation of
the termination criterion.
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Certified static analysis Building a certified static analyser

post-fixpoint computation by widening/narrowing
O/∆
[Cousot & Cousot 77]

1 we compute the limit of
x0 = ⊥, xn+1 = xnOf (xn)

2 we reach a post-fixpoint a of f
3 we compute the limit of

x0 = ⊥, xn+1 = xn∆f (xn)

4 we reach a post-fixpoint a ′ of f

lfp(f ) v a ′ v a

⊥

lfp(f )
increasing
iteration
with O

decreasing
iteration
with ∆
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Building a certified static analyser

semantics
domains

logic
links

abstract
domains

I Each abstract value represents a property on concrete values
I This correspondence is formalised by a monotone concretisation function

γ :
(
D],v

)
−→m (℘(D),⊆)

x ⊆ γ(x]) means “x] is a correct approximation of x”
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Certified static analysis Building a certified static analyser

Building a certified static analyser

semantics
domains

logic
links

abstract
domains

semantic
rules

I operational semantics · →P · between states
I collecting semantics : ~P� = { s | ∃s0 ∈ Sinit, s0 →∗

P s }

I we want to compute a correct approximation of ~P�
I a sound invariant s] on the reachable states : ~P� ⊆ γ(s])
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Certified static analysis Building a certified static analyser

Example : JVM operational semantics

instructionAtP(m, pc) = push c
〈〈h, 〈m, pc, l, s〉, sf 〉〉 → 〈〈h, 〈m, pc + 1, l, c :: s〉, sf 〉〉

instructionAtP(m, pc) = invokevirtual mid
m ′ = methodLookup(mid, h(loc))
V = v1 :: · · · :: vnbArguments(mid)

〈〈h, 〈m, pc, l, loc :: V :: s〉, sf 〉〉 → 〈〈h, 〈m ′, 1, V, ε〉, 〈m, pc, l, s〉 :: sf 〉〉
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Building a certified static analyser

semantics
domains

logic
links

abstract
domains

semantic
rules

analyse
specification

I the analysis is specified as a solution of a post fixpoint problem

F]
P(s]) v] s]

I after partitioning : constraint system
f ]
1 (s]

1, . . . , s]
n) v] s]

i1
· · ·

f ]
n (s]

1, . . . , s]
n) v] s]

in
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Building a certified static analyser

semantics
domains

logic
links

abstract
domains

semantic
rules

soundness
proof

analyse
specification

∀P, ∀s], F]
P(s]) v] s] ⇒ ~P� ⊆ γ(s])

I easy proof, but tedious
I one proof by instruction : a long work for real langages
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Building a certified static analyser

semantics
domains

logic
links

abstract
domains

semantic
rules

soundness
proof

analyse
specification

constraint
generation

I collects all constraints in a program
I generic tool
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Building a certified static analyser

semantics
domains

logic
links

abstract
domains

fixpoint
solvers

semantic
rules

soundness
proof

analyse
specification

constraint
generation

∀P, ∃s], F]
P(s]) v s]

Two techniques of iterative computation
I traditional least (post)-fixpoint computation

⊥ → F]
P(⊥) → F]

P
2
(⊥) → · · · lfp(F]

P)

I post-fixpoint computation by widening/narrowing with chaotic iterations
In the two cases, a generic tool
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Building a certified static analyser

semantics
domains

logic
links

abstract
domains

fixpoint
solvers

semantic
rules

soundness
proof

analyse
specification

constraint
generation

Final result

∀P, ∀s], F]
P(s]) v s] ⇒ ~P� ⊆ γ(s])

∀P, ∃s], F]
P(s]) v s]

}
∀P, ∃s], ~P� ⊆ γ(s])

In Coq : analyse : ∀ p:program, { s:abstate | sem(P) ⊆ gamma(P,s) }

In Caml : analyse : program → abstate
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Certified static analysis Building a certified static analyser

Case studies

The previous framework has been used to develop several analyses
1 A class analysis for a representative subset of bytecode Java

[ESOP’04,TCS’04]
2 A memory usage analysis for a representative subset of bytecode Java

[FM’05]
3 An interval analysis for the imperative fragment of bytecode Java

[TCS’06]

But we are here a little too brave : termination is not mandatory to establish
the soundness of an analysis
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From certified static analysis to certified PCC

Outline

1 Certified static analysis
Introduction
Building a certified static analyser

2 From certified static analysis to certified PCC

3 A case study : array-bound checks polyhedral analysis
Polyhedral abstract interpretation
Certified polyhedral abstract interpretation
Application : a polyhedral bytecode analyser
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From certified static analysis to certified PCC

Checking a property with abstract interpretation
If we want to ensure that a program P satisfies a property φ

~P� ⊆ φ ?

1 we compute a post-fixpoint of F]
P (over-approximation of ~P�)

∀s], F]
P(s]) v s] ⇒ ~P� ⊆ γ(s])

2 we compute an under-approximation φ] of φ

γ(φ]) ⊆ φ

3 we check that γ(s]) implies γ(φ]) using an abstract order check

s] v] φ]

4 by transitivity we conclude P satisfies φ

~P� ⊆ γ(s]) ⊆ γ(φ]) ⊆ φ
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From certified static analysis to certified PCC

PCC by abstract interpretation
Producer

untrusted
post-fixpoint solver

computes pf such that F](pf) v pf and pf v φ]

untrusted
compressor

Consumer

certificate
verifier

checks if F](pf) v pf and pf v φ]

Safe ?

post-fixpoint

program

post-fixpoint

David Pichardie Certified Proof Carrying Code by abstract interpretation 31 / 55



From certified static analysis to certified PCC

PCC by abstract interpretation
Producer

untrusted
post-fixpoint solver

computes pf such that F](pf) v pf and pf v φ]

untrusted
compressor

Consumer

certificate
verifier

checks if F](pf) v pf and pf v φ]

Safe ?

post-fixpoint

program

post-fixpoint

David Pichardie Certified Proof Carrying Code by abstract interpretation 31 / 55



From certified static analysis to certified PCC

PCC by abstract interpretation
Producer

untrusted
post-fixpoint solver

computes pf such that F](pf) v pf and pf v φ]

untrusted
compressor

Consumer

certificate
verifier

checks if F](pf) v pf and pf v φ]

Safe ?

post-fixpoint

program

post-fixpoint

David Pichardie Certified Proof Carrying Code by abstract interpretation 31 / 55



From certified static analysis to certified PCC

Certified PCC by abstract interpretation
Producer

certified
verifier

untrusted
post-fixpoint solver

computes pf such that F](pf) v pf and pf v φ

untrusted
compressor

Consumer

semantics
+

security
policy

certified
verifier

certified (post-fixpoint) verifier

(Coq file)

Coq kernel
+ Coq extraction

extracted
certificate

verifier
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inclusion
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A case study : array-bound checks polyhedral analysis Polyhedral abstract interpretation
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A case study : array-bound checks polyhedral analysis Polyhedral abstract interpretation

Polyhedral abstract interpretation

Automatic discovery of linear restraints among variables of a program.
P. Cousot and N. Halbwachs. POPL’78.

Patrick Cousot Nicolas Halbwachs

Polyhedral analysis seeks to discover invariant linear equality and inequality
relationships among the variables of an imperative program.
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A case study : array-bound checks polyhedral analysis Polyhedral abstract interpretation

Convex polyhedra

A convex polyhedron can be defined algebraically as the set of solutions to a
system of linear inequalities.
Geometrically, it can be defined as a finite intersection of half-spaces.
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A case study : array-bound checks polyhedral analysis Polyhedral abstract interpretation

Polyhedral analysis

State properties are over-approximated by convex polyhedra in Q2.

At junction point, we over
approximate union by a
convex union.

x = 0; y = 0;

while (x<6) {

if (?) {

y = y+2;

};

x = x+1;

}
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A case study : array-bound checks polyhedral analysis Polyhedral abstract interpretation

Polyhedral analysis

State properties are over-approximated by convex polyhedra in Q2.

By propagation we obtain a
post-fixpoint

which is
enhanced by downward
iteration.

x = 0; y = 0;

{0 6 y 6 2x}

while (x<6) {

if (?) {

{0 6 y 6 2x ∧ x 6 5}

y = y+2;

{2 6 y 6 2x+ 2 ∧ x 6 5}

};

{0 6 y 6 2x+ 2 ∧ 0 6 x 6 5}

x = x+1;

{0 6 y 6 2x ∧ 1 6 x 6 6}

}

{0 6 y 6 2x ∧ 6 6 x}
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Polyhedral analysis

A more complex example.

The analysis accepts to
replace some constants by
parameters.

x = 0; y = A;

{A 6 y 6 2x+ A ∧ x 6 N}

while (x<N) {

if (?) {

{A 6 y 6 2x+ A ∧ x 6 N − 1}

y = y+2;

{A + 2 6 y 6 2x+ A + 2 ∧ x 6 N − 1}

};

{A 6 y 6 2x+ A + 2 ∧ 0 6 x 6 N − 1}

x = x+1;

{A 6 y 6 2x+ A ∧ 1 6 x 6 N}

}

{A 6 y 6 2x+ A ∧ N = x}
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A case study : array-bound checks polyhedral analysis Polyhedral abstract interpretation

The four polyhedra operations
I ] ∈ Pn × Pn → Pn : convex union

I over-approximates the concrete
union in junction points

I ∩ ∈ Pn × Pn → Pn : intersection
I over-approximates the concrete

intersection after a conditional
intruction

I ~x :=e� ∈ Pn → Pn : affine
transformation

I over-approximates the affectation of
a variable by a linear expression

I O ∈ Pn × Pn → Pn : widening
I ensures (and accelerate)

convergence of (post-)fixpoint
iteration

I includes heuristics to infer loop
invariants

x = 0; y = 0;

P0 = ~y := 0�~x := 0�(Q2) O P4

while (x<6) {

if (?) {

P1 = P0 ∩ {x < 6}

y = y+2;

P2 = ~y := y+ 2�(P1)

};

P3 = P1 ] P2

x = x+1;

P4 = ~x := x+ 1�(P3)

}

P5 = P0 ∩ {x > 6}
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A case study : array-bound checks polyhedral analysis Polyhedral abstract interpretation

Library for manipulating polyhedra

I Parma Polyhedra Library2 (PPL), NewPolka : complex C/C++ libraries
I They rely on the Double Description Method

I polyhedra are managed using two representations in parallel

s1

s2

s3

r1

r2

I by set of inequalities

P =

 (x, y) ∈ Q2

∣∣∣∣∣∣∣∣
x > −1
x − y > −3
2x + y > −2
x + 2y > −4


I by set of generators

P =

{
λ1s1 + λ2s2 + λ3s3 + µ1r1 + µ2r2 ∈ Q2

∣∣∣∣ λ1, λ2, λ3, µ1, µ2 ∈ R2

λ1 + λ2 + λ3 = 1

}
I operations efficiency strongly depends on the chosen representations, so

they keep both
I We really don’t want this in a Trusted Computes Base !
I But we really don’t want to certify this C/C++ libraries neither !

2Previous tutorial on polyhedra partially comes from http://www.cs.unipr.it/ppl/
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Polyhedra in a PCC framework
Join work with F. Besson, T. Jensen and T. Turpin

Develop a checker of analysis results
I minimize the number of operations to certify
I avoid (some of the most) costly operations

The checker will receive a post-fixpoint + a certificate of certain polyhedra
inclusions to be verified by the checker

We develop one checker for a rich abstract domain based on Farkas lemma

Can accommodate invariants that are obtained
I automatically (intervals, polyhedra,. . . )
I by user-annotation (polynomials, . . . )
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A case study : array-bound checks polyhedral analysis Certified polyhedral abstract interpretation

A minimal polyhedral tool-kit
For efficiency and simplicity,
I Polyhedra are represented in constraint form prefixed by existentially

quantified variables
I Constraints are never normalised

Abstract operators are much simpler :
I Assignments do not trigger quantifier elimination ;

~x := e�(P) = ∃x ′, P[x ′/x] ∧ x = e[x ′/x]

I Intersection is just syntactic union of constraints ;
I (Over-approximations) of Convex Hulls are given as untrusted

invariants ;

isUpperBound(P, Q, UB) ≡ P v UB ∧ Q v UB

I Polyhedra inclusion is guided by a certificate ;

isIncluded(P, Q, Cert) ⇒ P v Q
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Certified PCC by abstract interpretation
Producer

certified
verifier

untrusted
post-fixpoint solver

untrusted
compressor

Consumer

semantics
+

security
policy

certified
verifier

certified (post-fixpoint) verifier

(Coq file)

Coq kernel
+ Coq extraction

extracted
certificate

verifier
Safe ?

post-fixpoint

program

post-fixpoint

inclusion
certificates
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A case study : array-bound checks polyhedral analysis Certified polyhedral abstract interpretation

Checking polyhedra inclusion using certificates

I Inclusion reduces to a conjunction of emptiness problems

P v {q1 > c1, . . . qm > cm}

if and only if
P ∪ {−q1 > −c1 + 1} = ∅∧ . . . ∧ P ∪ {−qm > −cm + 1} = ∅

I Each emptiness reduces to unsatisfiability of linear constraints

∀x1, . . . , xn, ¬

 a1,1, . . . , a1,n
...

am,1, . . . , am,n

 ·

 x1
...

xn

 >

 b1
...

bm


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Unsatisfiability certificates
Lemma (Farkas’s Lemma (Variant))
Let A ∈ Qm×n and b ∈ Qn.

∀x ∈ Qn, ¬(A · x > b)

if and only if

∃(cert ∈ Qm), cert > 0̄, such that
{

At · cert = 0̄
bt · cert > 0

Soundness of certificates is easy (⇐)

Démonstration.
Suppose A · x > b.
Since cert > 0̄ we have (A · x)t · cert > bt · cert.
Now xt · (At · cert) = (xt · At) · cert = (A · x)t · cert.
Hence xt · (At · cert) > bt · cert.
Therefore xt.0̄ = 0 > bt · cert > 0 → contradiction.

�
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Certificate checking

Example
Using the certificate cert = (1; 1; 5), check that 1 1

−1 4
0 −1

 ·
(

x
y

)
>

 2
1
1

 has no solutions.

Checking algorithm.

I Check
(

1 1
−1 4

0 1

)t

·
(

1
1
5

)
=

(
0
0

)
I Check

(
2
1
1

)t

·
(

1
1
5

)
> 0.

�

Checking time complexity is quadratic (matrix-vector product).
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Certificate generation by linear programming

Let A ∈ Qm×n and b ∈ Qn, the set of unsatisfiability certificates is defined as

Cert =

c

∣∣∣∣∣∣
c > 0
bt · c > 0
At · c = 0


Finding an extremal certificate is a linear programming problem

min{ct · 1̄ | c ∈ Cert}

that can be solved
I OverN, by linear integer programming algorithms

(Bad complexity, smallest certificate)
I Over Q, by the Simplex (or interior point methods)

(Good complexity and small certificate – in practise)

David Pichardie Certified Proof Carrying Code by abstract interpretation 47 / 55



A case study : array-bound checks polyhedral analysis Application : a polyhedral bytecode analyser

Outline

1 Certified static analysis
Introduction
Building a certified static analyser

2 From certified static analysis to certified PCC

3 A case study : array-bound checks polyhedral analysis
Polyhedral abstract interpretation
Certified polyhedral abstract interpretation
Application : a polyhedral bytecode analyser

David Pichardie Certified Proof Carrying Code by abstract interpretation 48 / 55



A case study : array-bound checks polyhedral analysis Application : a polyhedral bytecode analyser

Application : a polyhedral bytecode analyser

We have applied this technique for a Java-like bytecode language with
I (unbounded) integers,
I dynamically created (unidimensional) array of integers,
I static methods (procedures),
I static fields (global variables).

Linear invariant are used to statically checks that all array accesses are within
bounds.

It allows to remove the dynamic check used by standard JVM without risk of
buffer overflow attack.

In practice we could only try to detect statically some valid array accesses and
keep dynamic checks for the other accesses.
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Example : binary search

static int bsearch(int key, int[] vec) {

int low = 0, high = vec.length - 1;

while (0 < high-low) {

int mid = (low + high) / 2;

if (key == vec[mid]) return mid;
else if (key < vec[mid]) high = mid - 1;
else low = mid + 1;

}

return -1;
}

// PRE: 0 ≤ |vec0|
static int bsearch(int key, int[] vec) {

// (I1) key0 = key ∧ |vec0| = |vec| ∧ 0 ≤ |vec0|
int low = 0, high = vec.length - 1;

// (I2) key0 = key ∧ |vec0| = |vec| ∧ 0 ≤ low ≤ high + 1 ≤ |vec0|
while (0 < high-low) {

// (I3) key0 = key ∧ |vec0| = |vec| ∧ 0 ≤ low < high < |vec0|
int mid = (low + high) / 2;

// (I4) key0 = key ∧ |vec0| = |vec| ∧ 0 ≤ low < high < |vec0| ∧ low + high− 1 ≤ 2 · mid ≤ low + high
if (key == vec[mid]) return mid;
else if (key < vec[mid]) high = mid - 1;
else low = mid + 1;

// (I5) key0 = key ∧ |vec0| = |vec| ∧ −2 + 3 · low ≤ 2 · high + mid ∧ −1 + 2 · low ≤ high + 2 · mid ∧ −1 + low ≤ mid ≤
1+high∧high ≤ low+mid∧1+high ≤ 2 ·low+mid∧1+low+mid ≤ |vec0|+high∧2 ≤ |vec0|∧2+high+mid ≤ |vec0|+low

}
// (I6) key0 = key ∧ |vec0| = |vec| ∧ low− 1 ≤ high ≤ low ∧ 0 ≤ low ∧ high < |vec0|
return -1;

} // POST: −1 ≤ res < |vec0|

// PRE: True
static int bsearch(int key, int[] vec) {

// (I′
1) |vec0| = |vec| ∧ 0 ≤ |vec0|

int low = 0, high = vec.length - 1;
// (I′

2) |vec0| = |vec| ∧ 0 ≤ low ≤ high + 1 ≤ |vec0|
while (0 < high-low) {

// (I′
3) |vec0| = |vec| ∧ 0 ≤ low < high < |vec0|
int mid = (low + high) / 2;

// (I′
4) |vec|− |vec0| = 0 ∧ low ≥ 0 ∧ mid− low ≥ 0∧

// 2 · high− 2 · mid− 1 ≥ 0 ∧ |vec0|− high− 1 ≥ 0
if (key == vec[mid]) return mid;
else if (key < vec[mid]) high = mid - 1;
else low = mid + 1;

// (I′
5) |vec0| = |vec| ∧ −1 + low ≤ high ∧ 0 ≤ low ∧ 5 + 2 · high ≤ 2 · |vec|

}
// (I′

6) 0 ≤ |vec0|
return -1;

} // POST: −1 ≤ res < |vec0|

.class certificates checking time
Program before after before after
BSearch 515 22 12 0.005 0.007
BubbleSort 528 15 14 0.0005 0.0003
HeapSort 858 72 32 0.053 0.025
QuickSort 833 87 44 0.54 0.25

1
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A case study : array-bound checks polyhedral analysis Application : a polyhedral bytecode analyser

Example : binary search

static int bsearch(int key, int[] vec) {
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if (key == vec[mid]) return mid;
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// (I5) key0 = key ∧ |vec0| = |vec| ∧ −2 + 3 · low ≤ 2 · high + mid ∧ −1 + 2 · low ≤ high + 2 ·
mid ∧ −1 + low ≤ mid ≤ 1 + high ∧ high ≤ low + mid ∧ 1 + high ≤ 2 · low + mid ∧ 1 + low + mid ≤
|vec0| + high ∧ 2 ≤ |vec0| ∧ 2 + high + mid ≤ |vec0| + low

}
// (I6) key0 = key ∧ |vec0| = |vec| ∧ low− 1 ≤ high ≤ low ∧ 0 ≤ low ∧ high < |vec0|
return -1;

} // POST: −1 ≤ res < |vec0|

// PRE: True
static int bsearch(int key, int[] vec) {

// (I′
1) |vec0| = |vec| ∧ 0 ≤ |vec0|

int low = 0, high = vec.length - 1;
// (I′

2) |vec0| = |vec| ∧ 0 ≤ low ≤ high + 1 ≤ |vec0|
while (0 < high-low) {

// (I′
3) |vec0| = |vec| ∧ 0 ≤ low < high < |vec0|
int mid = (low + high) / 2;

// (I′
4) |vec|− |vec0| = 0 ∧ low ≥ 0 ∧ mid− low ≥ 0∧

// 2 · high− 2 · mid− 1 ≥ 0 ∧ |vec0|− high− 1 ≥ 0
if (key == vec[mid]) return mid;
else if (key < vec[mid]) high = mid - 1;
else low = mid + 1;

// (I′
5) |vec0| = |vec| ∧ −1 + low ≤ high ∧ 0 ≤ low ∧ 5 + 2 · high ≤ 2 · |vec|

}
// (I′

6) 0 ≤ |vec0|
return -1;

} // POST: −1 ≤ res < |vec0|

.class certificates checking time
Program before after before after
BSearch 515 22 12 0.005 0.007
BubbleSort 528 15 14 0.0005 0.0003
HeapSort 858 72 32 0.053 0.025
QuickSort 833 87 44 0.54 0.25

1

This is a correct post-fixpoint but there is too many informations (too precise) !
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Example : binary search

static int bsearch(int key, int[] vec) {

int low = 0, high = vec.length - 1;

while (0 < high-low) {

int mid = (low + high) / 2;
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// PRE: 0 ≤ |vec0|
static int bsearch(int key, int[] vec) {

// (I1) key0 = key ∧ |vec0| = |vec| ∧ 0 ≤ |vec0|
int low = 0, high = vec.length - 1;

// (I2) key0 = key ∧ |vec0| = |vec| ∧ 0 ≤ low ≤ high + 1 ≤ |vec0|
while (0 < high-low) {
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if (key == vec[mid]) return mid;
else if (key < vec[mid]) high = mid - 1;
else low = mid + 1;
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}
// (I6) key0 = key ∧ |vec0| = |vec| ∧ low− 1 ≤ high ≤ low ∧ 0 ≤ low ∧ high < |vec0|
return -1;

} // POST: −1 ≤ res < |vec0|

// PRE: True
static int bsearch(int key, int[] vec) {

// (I′
1) |vec0| = |vec| ∧ 0 ≤ |vec0|

int low = 0, high = vec.length - 1;
// (I′

2) |vec0| = |vec| ∧ 0 ≤ low ≤ high + 1 ≤ |vec0|
while (0 < high-low) {

// (I′
3) |vec0| = |vec| ∧ 0 ≤ low < high < |vec0|
int mid = (low + high) / 2;

// (I′
4) |vec|− |vec0| = 0 ∧ low ≥ 0 ∧ mid− low ≥ 0∧

// 2 · high− 2 · mid− 1 ≥ 0 ∧ |vec0|− high− 1 ≥ 0
if (key == vec[mid]) return mid;
else if (key < vec[mid]) high = mid - 1;
else low = mid + 1;

// (I′
5) |vec0| = |vec| ∧ −1 + low ≤ high ∧ 0 ≤ low ∧ 5 + 2 · high ≤ 2 · |vec|

}
// (I′

6) 0 ≤ |vec0|
return -1;

} // POST: −1 ≤ res < |vec0|

.class certificates checking time
Program before after before after
BSearch 515 22 12 0.005 0.007
BubbleSort 528 15 14 0.0005 0.0003
HeapSort 858 72 32 0.053 0.025
QuickSort 833 87 44 0.54 0.25

1

This one is less precise but sufficient to ensure the security policy.
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A case study : array-bound checks polyhedral analysis Application : a polyhedral bytecode analyser

Some preliminary benchmarks

.class certificates checking time
Program before after before after
BSearch 515 22 12 0.005 0.007
BubbleSort 528 15 14 0.0005 0.0003
HeapSort 858 72 32 0.053 0.025
QuickSort 833 87 44 0.54 0.25

Class files are given in bytes, certificates in number of constraints, time in
seconds.
The two checking times in the last column give the checking time with and
without fixpoint pruning.
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Foudational PCC by reflection

The generated certificate is a compressed post-fixpoint
I small certificate,
I but very adhoc checker.

In Foudational PCC, you want to obtain a machine-checked proof of Safe(p)

I general checker (as Coq)
I but the proof λ-term may be bigger than the adhoc certificate.

This can be done using reflection because we prove

checker_correct:

∀ (p : program) (cert : positive), checker p cert = true → safe p

With a foudational proof of the same size as the adhoc certificate !

checker_correct prog cert (refl_equal true)
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