
Proof Carrying Code : a quick tour
Types Summer School 2007 - Bertinoro - Italy

David Pichardie

INRIA Rennes - Bretagne Atlantique



Motivations

Mobile code dilemmas...

I The untrusted code may cause damages on the system
I intern structure corruption

I The untrusted code may use too many resources
I CPU, memory, SMS...

I The untrusted code may reveal confidential data to an attacker
I phonebook, diary, geo-localisation, camera, audio-recorder...

David Pichardie Proof Carrying Code : a quick tour 2 / 23



Motivations

Mobile code dilemmas...

Secure ?

Untrusted code Host system

I The untrusted code may cause damages on the system
I intern structure corruption

I The untrusted code may use too many resources
I CPU, memory, SMS...

I The untrusted code may reveal confidential data to an attacker
I phonebook, diary, geo-localisation, camera, audio-recorder...

David Pichardie Proof Carrying Code : a quick tour 2 / 23



Motivations

Solutions

I Cryptographic authentication : a trusted source signs the code
I we don’t trust the code but its source (e.g. phone operator)
I restricts the exchange possibilities : it’s difficult to gain trust if you are not a

big company

I Dynamic checking (sand box, monitoring)
I reduces the execution speed
I programs may raise scaring security exceptions like :

Your program as attempted a forbidden action !
I annoying situation, specially when the program has been signed by a big

company...
I users could progressively loose confidence in mobile code security

I Proof-Carrying Code (PCC)
I no trust required in the code producer
I no runtime overhead

I The three approaches can be combined to take advantages of all

David Pichardie Proof Carrying Code : a quick tour 3 / 23



Motivations

Solutions

I Cryptographic authentication : a trusted source signs the code
I we don’t trust the code but its source (e.g. phone operator)
I restricts the exchange possibilities : it’s difficult to gain trust if you are not a

big company
I Dynamic checking (sand box, monitoring)

I reduces the execution speed
I programs may raise scaring security exceptions like :

Your program as attempted a forbidden action !
I annoying situation, specially when the program has been signed by a big

company...
I users could progressively loose confidence in mobile code security

I Proof-Carrying Code (PCC)
I no trust required in the code producer
I no runtime overhead

I The three approaches can be combined to take advantages of all

David Pichardie Proof Carrying Code : a quick tour 3 / 23



Motivations

Solutions

I Cryptographic authentication : a trusted source signs the code
I we don’t trust the code but its source (e.g. phone operator)
I restricts the exchange possibilities : it’s difficult to gain trust if you are not a

big company
I Dynamic checking (sand box, monitoring)

I reduces the execution speed
I programs may raise scaring security exceptions like :

Your program as attempted a forbidden action !
I annoying situation, specially when the program has been signed by a big

company...
I users could progressively loose confidence in mobile code security

I Proof-Carrying Code (PCC)
I no trust required in the code producer
I no runtime overhead

I The three approaches can be combined to take advantages of all

David Pichardie Proof Carrying Code : a quick tour 3 / 23



Motivations

Solutions

I Cryptographic authentication : a trusted source signs the code
I we don’t trust the code but its source (e.g. phone operator)
I restricts the exchange possibilities : it’s difficult to gain trust if you are not a

big company
I Dynamic checking (sand box, monitoring)

I reduces the execution speed
I programs may raise scaring security exceptions like :

Your program as attempted a forbidden action !
I annoying situation, specially when the program has been signed by a big

company...
I users could progressively loose confidence in mobile code security

I Proof-Carrying Code (PCC)
I no trust required in the code producer
I no runtime overhead

I The three approaches can be combined to take advantages of all

David Pichardie Proof Carrying Code : a quick tour 3 / 23



Motivations

Proof carrying code : principles

Code

CPU

proof
checker

certifying
prover

Proof

I the code is sent with an independently certifiable
certificate (proof)

I the certificate is self-evident and unforgeable
I checking the certificate must be easier than

producing it

David Pichardie Proof Carrying Code : a quick tour 4 / 23



Motivations

The maze metaphor
c©G. Necula

program =maze

proof = red path

David Pichardie Proof Carrying Code : a quick tour 5 / 23



Motivations

The maze metaphor
c©G. Necula

program =maze proof = red path

David Pichardie Proof Carrying Code : a quick tour 5 / 23



Seminal work

Plan

1 Motivations

2 Seminal work

3 Other instances of PCC

4 The Mobius project

David Pichardie Proof Carrying Code : a quick tour 6 / 23



Seminal work

The Proof Carrying Code’s pioneers

First proposed by Georges Necula (Berkley) and Peter Lee (CMU).
I Necula & Lee, Safe Kernel Extensions Without Run-Time Checking, OSDI’96
I Necula, Proof-Carrying Code, POPL’97
I Necula & Lee, The Design and Implementation of a Certifying Compiler,

PLDI’98
I Necula, Compiling with Proofs, Phd thesis, 1998

David Pichardie Proof Carrying Code : a quick tour 7 / 23



Seminal work

Proof carrying code : standard framework

Code

CPU

Proof
checker

Certifying
prover

Proof

I the program is annotated (loop invariants, function
specifications),

I the VCGen computes a logic formula φ that if true
guarantees the program security,

I the certifying prover computes a proof object π which
establishes the validity of φ,

I the consumer rebuilds the formula φ and checks that
π is a valid proof of φ.

David Pichardie Proof Carrying Code : a quick tour 8 / 23



Seminal work

Proof carrying code : standard framework

Code

CPU

Proof
checker

Certifying
prover

Proof

Annotations

I the program is annotated (loop invariants, function
specifications),

I the VCGen computes a logic formula φ that if true
guarantees the program security,

I the certifying prover computes a proof object π which
establishes the validity of φ,

I the consumer rebuilds the formula φ and checks that
π is a valid proof of φ.

David Pichardie Proof Carrying Code : a quick tour 8 / 23



Seminal work

Proof carrying code : standard framework

Code

CPU

Proof
checker

Certifying
prover

Proof

Annotations

VCGen φ

I the program is annotated (loop invariants, function
specifications),

I the VCGen computes a logic formula φ that if true
guarantees the program security,

I the certifying prover computes a proof object π which
establishes the validity of φ,

I the consumer rebuilds the formula φ and checks that
π is a valid proof of φ.

David Pichardie Proof Carrying Code : a quick tour 8 / 23



Seminal work

Proof carrying code : standard framework

Code

CPU

Proof
checker

Certifying
prover

π

Annotations

VCGen φ

I the program is annotated (loop invariants, function
specifications),

I the VCGen computes a logic formula φ that if true
guarantees the program security,

I the certifying prover computes a proof object π which
establishes the validity of φ,

I the consumer rebuilds the formula φ and checks that
π is a valid proof of φ.

David Pichardie Proof Carrying Code : a quick tour 8 / 23



Seminal work

Proof carrying code : standard framework

Code

CPU

Proof
checker

Certifying
prover

π

Annotations

VCGen φ

VCGen

φ

I the program is annotated (loop invariants, function
specifications),

I the VCGen computes a logic formula φ that if true
guarantees the program security,

I the certifying prover computes a proof object π which
establishes the validity of φ,

I the consumer rebuilds the formula φ and checks that
π is a valid proof of φ.

David Pichardie Proof Carrying Code : a quick tour 8 / 23



Seminal work

The representation and checking for proofs

In this seminal work Necula and Lee used LF1

I a logical framework which allows to define logic systems with their proof
rules and provide a generic proof checker

Advantages :
I the verifier is generic, efficient, and small (and then certainly sound)

Disadvantages :
I certificates are big (sometimes 1000×code !)

Variants :
I LFi is a variant2 where the proof checker infers by itself fragments of the

proof (2.5×code)
I Oracle-based proofs3 reduces drastically this factor (12% of the code)

1R. Harper, F. Honsell and G. Plotkin. A framework for defining logics. Journal of the ACM, 1993.
2G.C. Necula and P. Lee. Efficient Representation and Validation of Proofs. LICS’98
3G.C. Necula and S. P. Rahul. Oracle-based checking of untrusted software. POPL’01

David Pichardie Proof Carrying Code : a quick tour 9 / 23



Seminal work

Certifying prover

The certifying prover
I automatically proves the verification conditions (VC)

I VC must fall in some logic fragments whose decision procedures have been
implemented in the prover

I in the PCC context, proving is not sufficient, detailed proof must be
generated too

I like decision procedures in skeptical proof assistants (Coq, Isabelle, HOL
light,...)

I proof producing decision procedures are more and more considered as an
important software engineering practice to develop proof assistants

Necula’s certifying prover includes
I congruence closure and linear arithmetic decision procedures
I with a Nelson-Oppen architecture for cooperating decision procedures

David Pichardie Proof Carrying Code : a quick tour 10 / 23



Seminal work

Annotation generation
Source
code

Machine
code

Annotations

CPU

Proof
checker

Certifying
prover

Certifying
compiler

πVCGen φ

VCGen

φ

I the transmitted program is the result of the compilation
of a source program written in a type-safe language

I the role of the certifying compiler is
I to check type-safety of the source program
I to generate corresponding annotations in the machine

code to help the VCGen

David Pichardie Proof Carrying Code : a quick tour 11 / 23



Seminal work

One example of PCC’s success
The Touchstone system4 verifies that optimized native machine code
produced by a special Java compiler is memory safe.

4C. Colby, P. Lee, G.C. Necula, F. Blau, M. Plesko and K. Cline. A certifying compiler for Java.
PLDI’00

David Pichardie Proof Carrying Code : a quick tour 12 / 23



Seminal work

Intermediate conclusions on standard PCC

I an astonish mix between logic, program verification and concrete
security issues,

I still a busy research area,
I PCC must demonstrate its ability to enforce more complex security

policies while conciliating many features :
I small certificates,
I efficient verifier,
I sound verifier,
I effective tools to build certificates,
I effective integration in tomorrow global computers.

David Pichardie Proof Carrying Code : a quick tour 13 / 23



Seminal work

Trusted Computing Base (TCB)

The TCB of a program is the set of components that must be trusted to ensure
the soundness of the program. Any bug in the others components will never
affect the soundness.

What is the PCC TCB ?

I the proof checker
I the VCGen
I the CPU

Source
code

Machine
code

Annotations

CPU

Proof
checker

Certifying
prover

Certifying
compiler

πVCGen φ

VCGen

φ

You don’t need to trust ...

David Pichardie Proof Carrying Code : a quick tour 14 / 23



Seminal work

Trusted Computing Base (TCB)

The TCB of a program is the set of components that must be trusted to ensure
the soundness of the program. Any bug in the others components will never
affect the soundness.

What is the PCC TCB ?
I the proof checker
I the VCGen
I the CPU

Source
code

Machine
code

Annotations

CPU

Proof
checker

Certifying
prover

Certifying
compiler

πVCGen φ

VCGen

φ

You don’t need to trust ...

David Pichardie Proof Carrying Code : a quick tour 14 / 23



Seminal work

Trusted Computing Base (TCB)

The TCB of a program is the set of components that must be trusted to ensure
the soundness of the program. Any bug in the others components will never
affect the soundness.

What is the PCC TCB ?
I the proof checker
I the VCGen
I the CPU

Source
code

Machine
code

Annotations

CPU

Proof
checker

Certifying
prover

Certifying
compiler

πVCGen φ

VCGen

φ

You don’t need to trust ...

David Pichardie Proof Carrying Code : a quick tour 14 / 23



Seminal work

Trusted Computing Base (TCB)

The TCB of a program is the set of components that must be trusted to ensure
the soundness of the program. Any bug in the others components will never
affect the soundness.

What is the PCC TCB ?
I the proof checker
I the VCGen
I the CPU

Source
code

Machine
code

Annotations

CPU

Proof
checker

Certifying
prover

Certifying
compiler

πVCGen φ

VCGen

φ

You don’t need to trust the compiler ...

David Pichardie Proof Carrying Code : a quick tour 14 / 23



Seminal work

Trusted Computing Base (TCB)

The TCB of a program is the set of components that must be trusted to ensure
the soundness of the program. Any bug in the others components will never
affect the soundness.

What is the PCC TCB ?
I the proof checker
I the VCGen
I the CPU

Source
code

Machine
code

Annotations

CPU

Proof
checker

Certifying
prover

Certifying
compiler

πVCGen φ

VCGen

φ

You don’t need to trust the compiler, the annotations ...

David Pichardie Proof Carrying Code : a quick tour 14 / 23



Seminal work

Trusted Computing Base (TCB)

The TCB of a program is the set of components that must be trusted to ensure
the soundness of the program. Any bug in the others components will never
affect the soundness.

What is the PCC TCB ?
I the proof checker
I the VCGen
I the CPU

Source
code

Machine
code

Annotations

CPU

Proof
checker

Certifying
prover

Certifying
compiler

πVCGen φ

VCGen

φ

You don’t need to trust the compiler, the annotations, the prover ...

David Pichardie Proof Carrying Code : a quick tour 14 / 23



Seminal work

Trusted Computing Base (TCB)

The TCB of a program is the set of components that must be trusted to ensure
the soundness of the program. Any bug in the others components will never
affect the soundness.

What is the PCC TCB ?
I the proof checker
I the VCGen
I the CPU

Source
code

Machine
code

Annotations

CPU

Proof
checker

Certifying
prover

Certifying
compiler

πVCGen φ

VCGen

φ

You don’t need to trust the compiler, the annotations, the prover, the proof ...

David Pichardie Proof Carrying Code : a quick tour 14 / 23



Other instances of PCC

Other instances of PCC (1/2)
An active trend in PCC has focused on soundness
I Touchstone has achieved an impressive level of scalability (programs

with about one million instructions)
I but5 “[...], there were errors in that code that escaped the thorough testing of the

infrastructure”.
I the weak point was the VCGen (23,000 lines of C...)

The following work have tried to reduce the size of the TCB
I by simply removing the VCGen !

I A.W. Appel. Foudational Proof-Carrying Code. LICS’01
I by certifying in a proof assistant the VCGen

I M. Wildmoser and T. Nipkow. Asserting Bytecode Safety. ESOP’05
I by certifying in a proof assistant the checker

I TAL (next slide), certified abstract interpretation (Lecture 4)

5G.C. Necula and R.R. Schneck. A Sound Framework for Untrusted Verification-Condition
Generators. LICS’03

David Pichardie Proof Carrying Code : a quick tour 15 / 23



Other instances of PCC

Other instances of PCC (2/2)

Some work use checkers and proof formats specific to one security property
I Rose’s Lightweight Bytecode Verifier

I ensures type-safety of Java bytecode programs,
I the proof/certificate is a (partial) type annotation,
I now part of the Sun KVM (JVM for embedded devices).

I TAL6 Typed Assembly Language for advanced memory safety
I Abstraction-Carrying Code7 : PCC by abstract interpretation

Such work lose the genericity of the seminal PCC proof checker, but can be
machine checked
I Lightweight Bytecode Verifier (Klein & Nipkow, Barthe & Dufay)
I TAL (Krary)
I Abstraction-Carrying Code (Besson & Jensen & Pichardie)

6G. Morrisett, D. Walker, K. Crary and Neal Glew. From System F to Typed Assembly Language.
POPL’98

7E. Albert, G. Puebla and M. V. Hermenegildo. Abstraction-Carrying Code. LPAR’05
David Pichardie Proof Carrying Code : a quick tour 16 / 23



The Mobius project

Plan

1 Motivations

2 Seminal work

3 Other instances of PCC

4 The Mobius project

David Pichardie Proof Carrying Code : a quick tour 17 / 23



The Mobius project

Perspectives : Mobius project

I PCC for Java mobile code,

I 16 European partners,

I started in 2005 for 4 years,

I coordinated by INRIA

David Pichardie Proof Carrying Code : a quick tour 18 / 23



The Mobius project

The goals of the Mobius project

I Certified PCC
I PCC soundness must be machine-checked
I Mobius uses the Coq proof assistant

I Security policy beyond memory-safety
I information flow : public outputs should not depends on confidential data
I resource usage : memory usage, billable actions,...
I functional correctness : proof-transforming compilation (Lecture 2)

I Innovative PCC certificate formats : proof by reflection (Lecture 3)
I Program verification

I Multi-threaded programs
I Extensive tool support

I ... see http://mobius.inria.fr

David Pichardie Proof Carrying Code : a quick tour 19 / 23

http://mobius.inria.fr


The Mobius project

Certified PCC

First component : Bicolano, an operational model of the Java Virtual Machine
I the basis for all machine checked proofs in Mobius
I JVM have been already modeled in proof assistants (Isabelle, ACL2, Coq)
I but Bicolano have some particularities :

I targets the CLDC platform (Java for mobile devices)
I uses intensively the Coq module system

I some components are described as abstract types to be independent from any
particular implementation choice

I efficient implementations provided (using functional maps)
I currently restricted to sequential programs but a multi-threaded extension is

foreseen

David Pichardie Proof Carrying Code : a quick tour 20 / 23



The Mobius project

Formal semantics : the weak point of proofs on
programming language

Two examples of theorem

Theorem
xn + yn = zn has no non-zero integer solutions for x, y and z when n > 2.

I depends on the definition ofN,Z, +, > and the power function.

Theorem
for all programs p, analyse(p) computes a correct approximation of ~p�.

I depends on the definition of ~·�
I a 400 pages book !

David Pichardie Proof Carrying Code : a quick tour 21 / 23



The Mobius project

Formal semantics : the weak point of proofs on
programming language

Two examples of theorem

Theorem
xn + yn = zn has no non-zero integer solutions for x, y and z when n > 2.

I depends on the definition ofN,Z, +, > and the power function.

Theorem
for all programs p, analyse(p) computes a correct approximation of ~p�.

I depends on the definition of ~·�
I a 400 pages book !

David Pichardie Proof Carrying Code : a quick tour 21 / 23



The Mobius project

Formal semantics : the weak point of proofs on
programming language

Two examples of theorem

Theorem
xn + yn = zn has no non-zero integer solutions for x, y and z when n > 2.

I depends on the definition ofN,Z, +, > and the power function.

Theorem
for all programs p, analyse(p) computes a correct approximation of ~p�.

I depends on the definition of ~·�

I a 400 pages book !

David Pichardie Proof Carrying Code : a quick tour 21 / 23



The Mobius project

Formal semantics : the weak point of proofs on
programming language

Two examples of theorem

Theorem
xn + yn = zn has no non-zero integer solutions for x, y and z when n > 2.

I depends on the definition ofN,Z, +, > and the power function.

Theorem
for all programs p, analyse(p) computes a correct approximation of ~p�.

I depends on the definition of ~·�
I a 400 pages book !

David Pichardie Proof Carrying Code : a quick tour 21 / 23



The Mobius project

TCB of certified PCC

CPU

Proof
checker

VCGen

φ
1 In standard PCC

2 If the VCGen is proved correct

+ the proof checker of the VCGen soundness
proof (could be the same as for the code proof)

+ the formal definition of the language semantics
+ the formal definition of the security property

This is still a large TCB but I prefer a TCB with
large formal definitions than with 20,000 lines of C
code. But this is a matter of taste !

David Pichardie Proof Carrying Code : a quick tour 22 / 23



The Mobius project

TCB of certified PCC

CPU

Proof
checker

VCGen

φ
1 In standard PCC
2 If the VCGen is proved correct

+ the proof checker of the VCGen soundness
proof (could be the same as for the code proof)

+ the formal definition of the language semantics
+ the formal definition of the security property

This is still a large TCB but I prefer a TCB with
large formal definitions than with 20,000 lines of C
code. But this is a matter of taste !

David Pichardie Proof Carrying Code : a quick tour 22 / 23



The Mobius project

TCB of certified PCC

CPU

Proof
checker

VCGen

φ
1 In standard PCC
2 If the VCGen is proved correct

+ the proof checker of the VCGen soundness
proof (could be the same as for the code proof)

+ the formal definition of the language semantics
+ the formal definition of the security property

This is still a large TCB but I prefer a TCB with
large formal definitions than with 20,000 lines of C
code. But this is a matter of taste !

David Pichardie Proof Carrying Code : a quick tour 22 / 23



The Mobius project

TCB of certified PCC

CPU

Proof
checker

VCGen

φ
1 In standard PCC
2 If the VCGen is proved correct

+ the proof checker of the VCGen soundness
proof (could be the same as for the code proof)

+ the formal definition of the language semantics

+ the formal definition of the security property

This is still a large TCB but I prefer a TCB with
large formal definitions than with 20,000 lines of C
code. But this is a matter of taste !

David Pichardie Proof Carrying Code : a quick tour 22 / 23



The Mobius project

TCB of certified PCC

CPU

Proof
checker

VCGen

φ
1 In standard PCC
2 If the VCGen is proved correct

+ the proof checker of the VCGen soundness
proof (could be the same as for the code proof)

+ the formal definition of the language semantics
+ the formal definition of the security property

This is still a large TCB but I prefer a TCB with
large formal definitions than with 20,000 lines of C
code. But this is a matter of taste !

David Pichardie Proof Carrying Code : a quick tour 22 / 23



The Mobius project

TCB of certified PCC

CPU

Proof
checker

VCGen

φ
1 In standard PCC
2 If the VCGen is proved correct

+ the proof checker of the VCGen soundness
proof (could be the same as for the code proof)

+ the formal definition of the language semantics
+ the formal definition of the security property

This is still a large TCB but I prefer a TCB with
large formal definitions than with 20,000 lines of C
code. But this is a matter of taste !

David Pichardie Proof Carrying Code : a quick tour 22 / 23



The Mobius project

Conclusions

The two main slogans of PCC
1 program verification should follow the maze metaphor

I less power consuming for the consumer
I more easy to trust (or prove correct)

2 TCB must be as small, as formal and generic as possible

The next challenges for PCC
1 PCC tools must be able to enforce more expressive security properties
2 certified PCC must reach the scalability level of standard PCC

David Pichardie Proof Carrying Code : a quick tour 23 / 23


	Motivations
	Seminal work
	Other instances of PCC
	The Mobius project

