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How to prove 2 + 2 = 4 in Coq ?
Demo
Why it is a correct proof ?
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Conversion rule

Γ ` t : T T ≡ U

Γ ` t : U

Definition

T ≡ U : T is convertible with U

≡ is the reflexive, symmetric and transitive closure of the
reduction rules

the conversion use strong reduction (i.e. reduction under
binder)

Remarks:

T and U are types but (can contain programs) like in
2 + 2 = 4

Confluence of reduction rules + strong normalization imply
decidability of the convertibility (so of the type checking)
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Derivation of
` refl equal Z 4 : 2 + 2 = 4
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Application: proof by computation (reflection)

Let P : A → Prop a property over element of A

Let test : A → bool a semi-decision procedure for P

Let test correct : ∀x : A. test x = true → P x a proof that the
semi-decision procedure is correct

Assuming that test a reduce to true, a proof of P a is

test correct a (refl equal true)
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Example in Coq: primality
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Different strategies for the conversion test

Lazy versus Call-by-value
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Example of primality proof

Mersenne numbers: 2n − 1
Lucas test: 2216091 − 1 checked in Coq (31th Mersenne prime,
8 days)

Pocklington certificate (less than 100 digits)

Elliptic curves (Laurent Théry) (less than 300 digits)

For Pocklington and Elliptic curves it can be see as result checking
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Other examples of proof by computation

4-colors theorem (Gontier, Werner)

Coq tactic for user: ring, field, romega, micromega(linear and
little more)

micromega also based on result certification.

See homepage of F Besson, B Grégoire, A Mahboudi, L Théry.
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Result checking

Theorem (Pocklington)

For all N, such that N − 1 = F ∗ R and if exists a such that:

F = p1 . . . pn

N < F 2

aN−1 mod N = 1

∀p ∈ {p1, . . . , pn}. gcd(a
N−1

p − 1,N) = 1

∀p ∈ {p1, . . . , pn}. prime p

then N is prime
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Advantages of proof by computation

Small proof

Efficient checking

The semi-decision procedure (or the checker) has to be proved but
have not to generate a proof.
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Application to PCC

Reducing the TCB: certified VCgen

Reducing the TCB and small certificate: certified analysis

We can mix the two
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Coq demo: A certified VCgen for bytecode
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