
Proof by computation

Benjamin Grégoire

INRIA Sophia Antipolis

Types Summer School
August 31th

Benjamin Grégoire Proof by computation 1/13



How to prove 2 + 2 = 4 in Coq ?
Demo
Why it is a correct proof ?

Benjamin Grégoire Proof by computation 2/13



Conversion rule

Γ ` t : T T ≡ U

Γ ` t : U

Definition

T ≡ U : T is convertible with U

≡ is the reflexive, symmetric and transitive closure of the
reduction rules

the conversion use strong reduction (i.e. reduction under
binder)

Remarks:

T and U are types but (can contain programs) like in
2 + 2 = 4

Confluence of reduction rules + strong normalization imply
decidability of the convertibility (so of the type checking)

Benjamin Grégoire Proof by computation 3/13



Derivation of
` refl equal Z 4 : 2 + 2 = 4

Benjamin Grégoire Proof by computation 4/13



Application: proof by computation (reflection)

Let P : A → Prop a property over element of A

Let test : A → bool a semi-decision procedure for P

Let test correct : ∀x : A. test x = true → P x a proof that the
semi-decision procedure is correct

Assuming that test a reduce to true, a proof of P a is

test correct a (refl equal true)

Benjamin Grégoire Proof by computation 5/13



Example in Coq: primality

Benjamin Grégoire Proof by computation 6/13



Different strategies for the conversion test

Lazy versus Call-by-value

Benjamin Grégoire Proof by computation 7/13



Example of primality proof

Mersenne numbers: 2n − 1
Lucas test: 2216091 − 1 checked in Coq (31th Mersenne prime,
8 days)

Pocklington certificate (less than 100 digits)

Elliptic curves (Laurent Théry) (less than 300 digits)

For Pocklington and Elliptic curves it can be see as result checking

Benjamin Grégoire Proof by computation 8/13



Other examples of proof by computation

4-colors theorem (Gontier, Werner)

Coq tactic for user: ring, field, romega, micromega(linear and
little more)

micromega also based on result certification.

See homepage of F Besson, B Grégoire, A Mahboudi, L Théry.

Benjamin Grégoire Proof by computation 9/13



Result checking

Theorem (Pocklington)

For all N, such that N − 1 = F ∗ R and if exists a such that:

F = p1 . . . pn

N < F 2

aN−1 mod N = 1

∀p ∈ {p1, . . . , pn}. gcd(a
N−1

p − 1,N) = 1

∀p ∈ {p1, . . . , pn}. prime p

then N is prime

Benjamin Grégoire Proof by computation 10/13



Advantages of proof by computation

Small proof

Efficient checking

The semi-decision procedure (or the checker) has to be proved but
have not to generate a proof.

Benjamin Grégoire Proof by computation 11/13



Application to PCC

Reducing the TCB: certified VCgen

Reducing the TCB and small certificate: certified analysis

We can mix the two

Benjamin Grégoire Proof by computation 12/13



Coq demo: A certified VCgen for bytecode

Benjamin Grégoire Proof by computation 13/13


