Proof by computation

Benjamin Grégoire

INRIA Sophia Antipolis

Types Summer School
August 31th
How to prove $2 + 2 = 4$ in Coq?
Demo
Why it is a correct proof?
Conversion rule

\[\Gamma \vdash t : T \quad T \equiv U \]
\[\Gamma \vdash t : U \]

Definition

- \(T \equiv U \): \(T \) is convertible with \(U \)
- \(\equiv \) is the reflexive, symmetric and transitive closure of the reduction rules
- the conversion use strong reduction (i.e. reduction under binder)

Remarks:

- \(T \) and \(U \) are types but (can contain programs) like in \(2 + 2 = 4 \)
- Confluence of reduction rules + strong normalization imply decidability of the convertibility (so of the type checking)
Derivation of

\[\vdash \text{refl_equal } Z \ 4 : 2 + 2 = 4 \]
Let $P : A \rightarrow \text{Prop}$ a property over element of A

Let $\text{test} : A \rightarrow \text{bool}$ a semi-decision procedure for P

Let $\text{test_correct} : \forall x : A. \text{test} \ x = \text{true} \rightarrow P \ x$ a proof that the semi-decision procedure is correct

Assuming that $\text{test} \ a$ reduce to true, a proof of $P \ a$ is

\[
\text{test_correct} \ a \ (\text{refl_equal} \ \text{true})
\]
Example in Coq: primality
Different strategies for the conversion test

Lazy versus Call-by-value
Example of primality proof

- Mersenne numbers: $2^n - 1$
- Lucas test: $2^{216091} - 1$ checked in Coq (31th Mersenne prime, 8 days)
- Pocklington certificate (less than 100 digits)
- Elliptic curves (Laurent Théry) (less than 300 digits)

For Pocklington and Elliptic curves it can be seen as result checking
Other examples of proof by computation

- 4-colors theorem (Gontier, Werner)
- Coq tactic for user: ring, field, romeo, micromega(linear and little more)

micromega also based on result certification.

See homepage of F Besson, B Grégoire, A Mahboudi, L Théry.
Theorem (Pocklington)

For all N, such that $N - 1 = F \cdot R$ and if exists a such that:

- $F = p_1 \cdots p_n$
- $N < F^2$
- $a^{N-1} \mod N = 1$
- $\forall p \in \{p_1, \ldots, p_n\}$. $\gcd(a^{\frac{N-1}{p}} - 1, N) = 1$
- $\forall p \in \{p_1, \ldots, p_n\}$. prime p

then N is prime
Advantages of proof by computation

- Small proof
- Efficient checking

The semi-decision procedure (or the checker) has to be proved but have not to generate a proof.
Reducing the TCB: certified VCgen
Reducing the TCB and small certificate: certified analysis
We can mix the two
Coq demo: A certified VCgen for bytecode