
Preservation of Proof Obligations: PPO

Benjamin Grégoire

INRIA Sophia Antipolis

Types Summer School
August 30th

Benjamin Grégoire Preservation of Proof Obligations: PPO 1/35

Plan

Source language: While

Bytecode language: JVMi

Compilation Scheme (correctness)

A simple VCgen for While

A simple VCgen for JVMi (soundness)

Preservation of proof obligations: PPO

Benjamin Grégoire Preservation of Proof Obligations: PPO 2/35

Syntax of the source language: While

operations op ::= + | × | . . .
comparisons cmp ::= ≤ |= | . . .
expressions e ::= x | c | e op e
tests t ::= e cmp e
instructions i ::= x := e assignment

| if(t){i}{i} conditional
| while(t){i} loop
| i ; i sequence
| skip skip

where c ∈ Z and x ∈ X .

A While program P = i ; return e

Benjamin Grégoire Preservation of Proof Obligations: PPO 3/35

Semantics of While

Semantics of expressions e
ρ
↪→ v :

x
ρ
↪→ ρ(x) c

ρ
↪→ c

e1
ρ
↪→ v1 e2

ρ
↪→ v2

e1 op e2
ρ
↪→ v1 op v2

Semantics of instructions [i , ρ] ⇓S ρ′:

[skip, ρ] ⇓S ρ

e
ρ
↪→ v

[x := e, ρ] ⇓S ρ{x 7→ v}

[i1, ρ] ⇓S ρ′ [ρ′, i2] ⇓S ρ′′
[i1; i2, ρ] ⇓S ρ′′

Benjamin Grégoire Preservation of Proof Obligations: PPO 4/35

Semantics of branching instructions

e1
ρ
↪→ v1 e2

ρ
↪→ v2

e1 cmp e2
ρ
↪→ v1 cmp v2

t
ρ
↪→ true [it , ρ] ⇓S ρ′

[if(t){it}{if }, ρ] ⇓S ρ′
t

ρ
↪→ false [if , ρ] ⇓S ρ′

[if(t){it}{if }, ρ] ⇓S ρ′

t
ρ
↪→ false

[while(t){i}, ρ] ⇓S ρ

t
ρ
↪→ true [i , ρ] ⇓S ρ′ [while(t){i}, ρ′] ⇓S ρ′′

[while(t){i}, ρ] ⇓S ρ′′

Benjamin Grégoire Preservation of Proof Obligations: PPO 5/35

Semantics of programs P : ρ0 ⇓S v

P = i ; return e [i , ρ0] ⇓S ρ e
ρ
↪→ v

P : ρ0 ⇓S v

Remark: We can only express the semantics of terminating
programs, to express the semantics of all programs use a small-step
semantics (do it !!!).

Benjamin Grégoire Preservation of Proof Obligations: PPO 6/35

The JVMi: Informal definitions

A machine state =
bytecode, program counter, operand stack, memory

Bytecode = an array of basic instructions (no more structure)

Program counter, label = a position in the bytecode

Operand stack = a stack used to store intermediate values

(Local) memory = valuation of variables (same as for While)

Benjamin Grégoire Preservation of Proof Obligations: PPO 7/35

Syntax of JVMi

intructions i ::= Iconst c push value on top of stack
| Ibinop op binary operation on stack
| Iload x load value of x on stack
| Istore x store top of stack in variable x
| Igoto j unconditional jump
| Iif cmp j conditional jump
| Ireturn return the top value of the stack

where c ∈ Z, x ∈ X , and j ∈ Pc .

Benjamin Grégoire Preservation of Proof Obligations: PPO 8/35

Semantics of JVMi

Ṗ[k] = Iconst c

〈k, ρ, os〉 〈k + 1, ρ, c :: os〉

Ṗ[k] = Ibinop op v = v1 op v2

〈k, ρ, v1 :: v2 :: os〉 〈k + 1, ρ, v :: os〉

Ṗ[k] = Iload x

〈k, ρ, os〉 〈k + 1, ρ, ρ(x) :: os〉

Ṗ[k] = Istore x

〈k, ρ, v :: os〉 〈k + 1, ρ{x 7→ v}, os〉

Benjamin Grégoire Preservation of Proof Obligations: PPO 9/35

Semantics of JVMi: branching instructions

Ṗ[k] = Igoto j

〈k, ρ, os〉 〈j , ρ, os〉

Ṗ[k] = Iif cmp j v1 cmp v2 = true

〈k, ρ, v1 :: v2 :: os〉 〈k + 1, ρ, os〉

Ṗ[k] = Iif cmp j v1 cmp v2 = false

〈k, ρ, v1 :: v2 :: os〉 〈j , ρ, os〉

Benjamin Grégoire Preservation of Proof Obligations: PPO 10/35

Semantics of a bytecode program

〈1, ρ0, ∅〉 ∗ 〈k, ρ, v :: os〉 Ṗ[k] = Ireturn

Ṗ : ρ0 ⇓ v

Benjamin Grégoire Preservation of Proof Obligations: PPO 11/35

Compilation scheme

The compiler is defined by two functions:

Compilation of expressions [[e]]:
generates a bytecode sequence which evaluate e and
store/push the result on the top of the operand stack;

Compilation of instructions k : [[i]]:
k indicates the starting position of the resulting bytecode
sequence. It is used to compute the labels attached to
branching instructions.

Benjamin Grégoire Preservation of Proof Obligations: PPO 12/35

Compilation of expressions

[[x]] = Iload x
〈k, ρ, os〉 〈k + 1, ρ, ρ(x) :: os〉

[[c]] = Iconst c
〈k, ρ, os〉 〈k + 1, ρ, c :: os〉

[[e1 op e2]] = [[e2]]; [[e1]]; Ibinop op
〈k, ρ, v1 :: v2 :: os〉 〈k + 1, ρ, v1 op v2 :: os〉

Benjamin Grégoire Preservation of Proof Obligations: PPO 13/35

Compilation of instructions

k : [[x := e]] = [[e]]; Istore x

k : [[i1; i2]] = k : [[i1]]; k2 : [[i2]]
where k2 = k + |[[i1]]|

k : [[return e]] = [[e]]; Ireturn

Benjamin Grégoire Preservation of Proof Obligations: PPO 14/35

Compilation of instructions

k : [[if(e1 cmp e2){i1}{i2}]] = [[e2]]; [[e1]]; Iif cmp k2;
k1 : [[i1]]; Igoto k3; k2 : [[i2]]

where k1 = k + |[[e2]]|+ |[[e1]]|+ 1
k2 = k1 + |[[i1]]|+ 1
k3 = k2 + |[[i2]]|

k : [[while(e1 cmp e2){i}]] = [[e2]]; [[e1]]; Iif cmp k2;
k1 : [[i]]; Igoto k

where k1 = k + |[[e2]]|+ |[[e1]]|+ 1
k2 = k1 + |[[i]]|+ 1

Benjamin Grégoire Preservation of Proof Obligations: PPO 15/35

Correctness of the compiler

Lemma (Correctness for expressions)

For all bytecode program Ṗ, expression e, value v, memory ρ and
operand stack os such that l = |[[e]]| and Ṗ[k..k + l] = [[e]]

e
ρ
↪→ v ⇒ 〈k, ρ, os〉 ∗ 〈k + l , ρ, v :: os〉

Lemma (Correctness for instructions)

For all bytecode program Ṗ, instruction i , memories ρ and ρ′ such
that l = |[[i]]| and Ṗ[k..k + l] = k : [[i]]

[i , ρ] ⇓S ρ′ ⇒ 〈k, ρ, ∅〉 ∗ 〈k + l , ρ′, ∅〉

Benjamin Grégoire Preservation of Proof Obligations: PPO 16/35

Correctness of the compiler

Lemma (Correctness of the compiler)

For all source program P, if P : ρ0 ⇓S v then is compiled version
evaluate to the same result:

P : ρ0 ⇓S v ⇒ [[P]] : ρ0 ⇓ v

Benjamin Grégoire Preservation of Proof Obligations: PPO 17/35

Verification Condition generator for While

Definition (Hoare triple: {P} i {Q})
If the value associated to the variables before the execution of the
instruction i satisfy the proposition P (precondition) then the value
associated to the variables after the execution of i satisfy the
proposition Q (postcondition).

Example of rules:

{P{x 7→ e}} x := e {P}
P1 ⇒ P2 {P2} i {Q}

{P2} i {Q}

Benjamin Grégoire Preservation of Proof Obligations: PPO 18/35

Definition (assertion)

The set of propositions is defined as follow:

Expressions ē(V) ::= V | c | ē op ē
Propositions P(V) ::= ē(V) cmp ē(V) | ¬P(V)

| P(V) ∧ P(V) | P(V) ⇒ P(V)
Preconditions Φ ::= P(x̄)
Assertions φ, ψ ::= P(x |x̄)
Postconditions Ψ ::= P(x̄ |res)

where x̄ is a special variable representing the initial value of the
variable x , and res is a special value representing the final value of
the evaluation of the program.

Benjamin Grégoire Preservation of Proof Obligations: PPO 19/35

Definition

Interpretation

Interpretation of precondition

ρ̄ |= Φ
def≡ ` Φ{x̄ 7→ ρ̄(x)}

Interpretation of assertion

ρ̄, ρ |= ψ
def≡ ` ψ{x̄ 7→ ρ̄(x)}{x 7→ ρ(x)}

Interpretation of postcondition

ρ̄, v |= Ψ
def≡ ` ψ{x̄ 7→ ρ̄(x)}{res 7→ v}

Benjamin Grégoire Preservation of Proof Obligations: PPO 20/35

Verification Condition generator for While

Given a (annotated) program P a precondition Φ and a
postcondition Ψ we want to find a set of verification conditions
VCgenS(P,Φ,Fpost) such that if all the verification conditions are
provable we have :

ρ̄ |= Φ
P : ρ̄ ⇓S v

}
⇒ ρ̄, v |= Ψ

Benjamin Grégoire Preservation of Proof Obligations: PPO 21/35

Verification Condition generator for While

wpS(skip, ψ) = ψ, ∅ wpS(x := e, ψ) = ψ{x 7→ e}, ∅

wpS(i2, ψ) = φ2, θ2 wpS(i1, φ2) = φ1, θ1
wpS(i1; i2, ψ) = φ1, θ1 ∪ θ2

wpS(it , ψ) = φt , θt wpS(if , ψ) = φf , θf
wpS(if(t){it}{if }, ψ) = (t ⇒ φt) ∧ (¬t ⇒ φf), θt ∪ θf

P = i ; return e wpS(i ,Ψ{res 7→ e}) = φ, θ

VCgenS(P,Φ,Ψ) = {Φ ⇒ φ{~x 7→ ~̄x}} ∪ θ

Benjamin Grégoire Preservation of Proof Obligations: PPO 22/35

Verification condition of loop

Rule for loop:
{I ∧ t} i {I}

{I} while(t){i} {I ∧ ¬t}

Application:

(I ∧ t) ⇒ φ {φ} i {I}
{I ∧ t} i {I}

{I} while(t){i} {I ∧ ¬t}
(I ∧ ¬t) ⇒ ψ

{I} while(t){i} {ψ}

Verification condition:

wpS(i , I) = φ, θ

wpS(whileI (t){i}, ψ) = I , {I ⇒ (t ⇒ φ) ∧ (¬t ⇒ ψ)} ∪ θ

Benjamin Grégoire Preservation of Proof Obligations: PPO 23/35

Correctness of the VCgen

Lemma (Correctness)

For all program P if VCgenS(P,Φ,Ψ) are provable then

ρ̄ |= Φ
P : ρ̄ ⇓S v

}
⇒ ρ̄, v |= Ψ

Benjamin Grégoire Preservation of Proof Obligations: PPO 24/35

A VCgen for bytecode

First difference with While: the assertions should refer to position
in the stack

Definition (Bytecode proposition)

Stack expressions ōs ::= os | ē(sv) :: ōs |↑k ōs
Bytecode variables sv ::= x | x̄ | ōs[i]
Preconditions Φ ::= P(x̄)
Assertions φ, ψ ::= P(sv)
Postconditions Ψ ::= P(x̄ |res)

Benjamin Grégoire Preservation of Proof Obligations: PPO 25/35

Second difference with While: the loop invariants

Definition

An annotated bytecode program is a tuple (Ṗ,Φ,Λ,Ψ) where
Λ is an annotation table.

An annotation table associate to some program points an
assertion (invariant) which should be valid each time the
evaluation of the program reach the corresponding program
point

Benjamin Grégoire Preservation of Proof Obligations: PPO 26/35

Rules of the VCgen

The verification condition generator is defined with two mutually
recursive functions wpl(k) and wpi (k)

wpl(k) compute the weakest precondition of the program
point k using the annotation table:

wpl(k) =

{
φ if Λ(k) = φ

wpi (k)

wpi (k) is the predicate transformer, first the function compute
the weakest precondition of all the successors of the
instruction at k and then transform the resulting conditions
depending on the instruction

Benjamin Grégoire Preservation of Proof Obligations: PPO 27/35

Weakest precondition

Ṗ[k]
Iconst c wpi (k) = wpl(k + 1){os 7→ c :: os}
Ibinop op wpi (k) = wpl(k + 1){os 7→ (os[0] op os[1]) ::↑2 os}
Iload x wpi (k) = wpl(k + 1){os 7→ x :: os}
Istore x wpi (k) = wpl(k + 1){os, x 7→ ↑ os, os[0]}
Igoto l wpi (k) = wpl(l)

Iif cmp l wpi (k) =
(t ⇒ wpl(k + 1){os 7→ ↑2 os})

∧ (¬t ⇒ wpl(l){os 7→ ↑2 os})
where t = os[0] cmp os[1]

Ireturn wpi (k) = Ψ{res 7→ os[0]}

Benjamin Grégoire Preservation of Proof Obligations: PPO 28/35

Definition (VCgen for JVMi)

The set of verification condition of a bytecode program
VCgenB(Ṗ,Φ,Λ,Ψ) is the the smallest set of propositions such
that:

The precondition implies the weakest precondition of the
starting point is in the set:

(Φ ⇒ wpl(0){~x 7→ ~̄x}) ∈ VCgenB(Ṗ,Φ,Λ,Ψ)

For all annotated program point (Λ(k) = Ṗ), the annotation
Ṗ implies the weakest precondition of the instruction at k are
in the set:

∀k,Λ(k) = Ṗ ⇒ (Ṗ ⇒ wpi (k)) ∈ VCgenB(Ṗ,Φ,Λ,Ψ)

Benjamin Grégoire Preservation of Proof Obligations: PPO 29/35

Correctness of the VCgen

Lemma

For all bytecode program Ṗ, precondition Φ, postcondition, Ψ and
annotation table Λ, if the proof obligations of Ṗ are valid (i.e.
` VCgenB(Ṗ,Φ,Λ,Ψ)) then the following property hold:

ρ̄, ρ, os |= wpl(k) ⇒ ρ̄, ρ, os |= wpi (k)

Lemma (Soundness for one execution step)

For all bytecode program Ṗ, precondition Φ, postcondition, Ψ and
annotation table Λ, if the proof obligations of Ṗ are valid (i.e.
` VCgenB(Ṗ,Φ,Λ,Ψ)) then the following property hold:

ρ̄, ρ, os |= wpi (k)
〈k, ρ, os〉 〈k ′, ρ′, os ′〉

}
⇒ ρ̄, ρ′, os ′ |= wpl(k

′)

Benjamin Grégoire Preservation of Proof Obligations: PPO 30/35

Lemma (Soundness of the bytecode VCgen)

For all bytecode program Ṗ, precondition Φ, postcondition, Ψ and
annotation table Λ, if the proof obligations of Ṗ are valid (i.e.
` VCgenB(Ṗ,Φ,Λ,Ψ)) then the following property hold:

ρ̄ |= Φ

Ṗ : ρ̄ ⇓ v

}
⇒ ρ̄, v |= Ψ

Benjamin Grégoire Preservation of Proof Obligations: PPO 31/35

Preservation of proof obligations

Our goal is to show the preservation of proof obligation, i.e. given
an annotated source program and his compiled version there exists
an annotation table Λ such that:

VCgenS(P,Φ,Ψ) = VCgenB([[P]],Φ,Λ,Ψ)

To that end, we extend the compiler for annotated source program.
Only the compilation rule for the while change: each time the
compiler translate a annotated loop starting from position k
(k : [[whileI (t){c}]]), it inserts in the annotation table the invariant
I at position k.
The translation of the pre and postcondition is the identity.

Benjamin Grégoire Preservation of Proof Obligations: PPO 32/35

Preservation of proof obligations

Lemma (Preservation of proof obligations for expressions)

Given a annotated source program P,Φ,Ψ) and its compiled
(Ṗ,Φ,Λ,Ψ). For all sub-expression e, appearing in the program, if
the sequence of code corresponding to the compilation of e start
at position k and terminate at position l (i.e. l = k + |[[e]]|) and
wpl(l) = ψ then wpl(k) = ψ{os 7→ e :: os}.

Benjamin Grégoire Preservation of Proof Obligations: PPO 33/35

Preservation of proof obligations

Lemma (Preservation of proof obligations for instructions)

Given a annotated program (i ′; return e ′,Φ,Ψ) and its compiled
(Ṗ,Φ,Λ,Ψ). For all sub-instruction i ⊆ i ′ which is compiled
starting from position k (i.e Ṗ[k..k + |[[i]]|] = k : [[i]]) and for all
postcondition ψ, if wpS(i , ψ) = φ, θ and wpl(k + |[[i]]|) = ψ then
following properties hold:

wpl(k) = φ

For all C ∈ θ there exists k ′ ∈ [k..k + |[[i]]|] and loop invariant
I such that Λ(k ′) = I and

C = (I ⇒ wpi (k
′))

Benjamin Grégoire Preservation of Proof Obligations: PPO 34/35

Soundness of the source VCgen

Soundness of the bytecode VCgen
+

Correctness of the compiler
+

Preservation of proof obligation
===========================

Soundness of the source VCgen

Benjamin Grégoire Preservation of Proof Obligations: PPO 35/35

