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Plan

Source language: While

Bytecode language: JVMi

Compilation Scheme (correctness)

A simple VCgen for While

A simple VCgen for JVMi (soundness)

Preservation of proof obligations: PPO
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Syntax of the source language: While

operations op ::= + | × | . . .
comparisons cmp ::= ≤ |= | . . .
expressions e ::= x | c | e op e
tests t ::= e cmp e
instructions i ::= x := e assignment

| if(t){i}{i} conditional
| while(t){i} loop
| i ; i sequence
| skip skip

where c ∈ Z and x ∈ X .

A While program P = i ; return e
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Semantics of While

Semantics of expressions e
ρ
↪→ v :

x
ρ
↪→ ρ(x) c

ρ
↪→ c

e1
ρ
↪→ v1 e2

ρ
↪→ v2

e1 op e2
ρ
↪→ v1 op v2

Semantics of instructions [i , ρ] ⇓S ρ′:

[skip, ρ] ⇓S ρ

e
ρ
↪→ v

[x := e, ρ] ⇓S ρ{x 7→ v}

[i1, ρ] ⇓S ρ′ [ρ′, i2] ⇓S ρ′′
[i1; i2, ρ] ⇓S ρ′′
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Semantics of branching instructions

e1
ρ
↪→ v1 e2

ρ
↪→ v2

e1 cmp e2
ρ
↪→ v1 cmp v2

t
ρ
↪→ true [it , ρ] ⇓S ρ′

[if(t){it}{if }, ρ] ⇓S ρ′
t

ρ
↪→ false [if , ρ] ⇓S ρ′

[if(t){it}{if }, ρ] ⇓S ρ′

t
ρ
↪→ false

[while(t){i}, ρ] ⇓S ρ

t
ρ
↪→ true [i , ρ] ⇓S ρ′ [while(t){i}, ρ′] ⇓S ρ′′

[while(t){i}, ρ] ⇓S ρ′′
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Semantics of programs P : ρ0 ⇓S v

P = i ; return e [i , ρ0] ⇓S ρ e
ρ
↪→ v

P : ρ0 ⇓S v

Remark: We can only express the semantics of terminating
programs, to express the semantics of all programs use a small-step
semantics (do it !!!).
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The JVMi: Informal definitions

A machine state =
bytecode, program counter, operand stack, memory

Bytecode = an array of basic instructions (no more structure)

Program counter, label = a position in the bytecode

Operand stack = a stack used to store intermediate values

(Local) memory = valuation of variables (same as for While)
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Syntax of JVMi

intructions i ::= Iconst c push value on top of stack
| Ibinop op binary operation on stack
| Iload x load value of x on stack
| Istore x store top of stack in variable x
| Igoto j unconditional jump
| Iif cmp j conditional jump
| Ireturn return the top value of the stack

where c ∈ Z, x ∈ X , and j ∈ Pc .
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Semantics of JVMi

Ṗ[k] = Iconst c

〈k, ρ, os〉 〈k + 1, ρ, c :: os〉

Ṗ[k] = Ibinop op v = v1 op v2

〈k, ρ, v1 :: v2 :: os〉 〈k + 1, ρ, v :: os〉

Ṗ[k] = Iload x

〈k, ρ, os〉 〈k + 1, ρ, ρ(x) :: os〉

Ṗ[k] = Istore x

〈k, ρ, v :: os〉 〈k + 1, ρ{x 7→ v}, os〉
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Semantics of JVMi: branching instructions

Ṗ[k] = Igoto j

〈k, ρ, os〉 〈j , ρ, os〉

Ṗ[k] = Iif cmp j v1 cmp v2 = true

〈k, ρ, v1 :: v2 :: os〉 〈k + 1, ρ, os〉

Ṗ[k] = Iif cmp j v1 cmp v2 = false

〈k, ρ, v1 :: v2 :: os〉 〈j , ρ, os〉
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Semantics of a bytecode program

〈1, ρ0, ∅〉 ∗ 〈k, ρ, v :: os〉 Ṗ[k] = Ireturn

Ṗ : ρ0 ⇓ v
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Compilation scheme

The compiler is defined by two functions:

Compilation of expressions [[e]]:
generates a bytecode sequence which evaluate e and
store/push the result on the top of the operand stack;

Compilation of instructions k : [[i ]]:
k indicates the starting position of the resulting bytecode
sequence. It is used to compute the labels attached to
branching instructions.
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Compilation of expressions

[[x ]] = Iload x
〈k, ρ, os〉  〈k + 1, ρ, ρ(x) :: os〉

[[c]] = Iconst c
〈k, ρ, os〉  〈k + 1, ρ, c :: os〉

[[e1 op e2]] = [[e2]]; [[e1]]; Ibinop op
〈k, ρ, v1 :: v2 :: os〉  〈k + 1, ρ, v1 op v2 :: os〉
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Compilation of instructions

k : [[x := e]] = [[e]]; Istore x

k : [[i1; i2]] = k : [[i1]]; k2 : [[i2]]
where k2 = k + |[[i1]]|

k : [[return e]] = [[e]]; Ireturn
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Compilation of instructions

k : [[if(e1 cmp e2){i1}{i2}]] = [[e2]]; [[e1]]; Iif cmp k2;
k1 : [[i1]]; Igoto k3; k2 : [[i2]]

where k1 = k + |[[e2]]|+ |[[e1]]|+ 1
k2 = k1 + |[[i1]]|+ 1
k3 = k2 + |[[i2]]|

k : [[while(e1 cmp e2){i}]] = [[e2]]; [[e1]]; Iif cmp k2;
k1 : [[i ]]; Igoto k

where k1 = k + |[[e2]]|+ |[[e1]]|+ 1
k2 = k1 + |[[i ]]|+ 1
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Correctness of the compiler

Lemma (Correctness for expressions)

For all bytecode program Ṗ, expression e, value v, memory ρ and
operand stack os such that l = |[[e]]| and Ṗ[k..k + l ] = [[e]]

e
ρ
↪→ v ⇒ 〈k, ρ, os〉 ∗ 〈k + l , ρ, v :: os〉

Lemma (Correctness for instructions)

For all bytecode program Ṗ, instruction i , memories ρ and ρ′ such
that l = |[[i ]]| and Ṗ[k..k + l ] = k : [[i ]]

[i , ρ] ⇓S ρ′ ⇒ 〈k, ρ, ∅〉 ∗ 〈k + l , ρ′, ∅〉
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Correctness of the compiler

Lemma (Correctness of the compiler)

For all source program P, if P : ρ0 ⇓S v then is compiled version
evaluate to the same result:

P : ρ0 ⇓S v ⇒ [[P]] : ρ0 ⇓ v
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Verification Condition generator for While

Definition (Hoare triple: {P} i {Q})
If the value associated to the variables before the execution of the
instruction i satisfy the proposition P (precondition) then the value
associated to the variables after the execution of i satisfy the
proposition Q (postcondition).

Example of rules:

{P{x 7→ e}} x := e {P}
P1 ⇒ P2 {P2} i {Q}

{P2} i {Q}
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Definition (assertion)

The set of propositions is defined as follow:

Expressions ē(V ) ::= V | c | ē op ē
Propositions P(V ) ::= ē(V ) cmp ē(V ) | ¬P(V )

| P(V ) ∧ P(V ) | P(V ) ⇒ P(V )
Preconditions Φ ::= P(x̄)
Assertions φ, ψ ::= P(x |x̄)
Postconditions Ψ ::= P(x̄ |res)

where x̄ is a special variable representing the initial value of the
variable x , and res is a special value representing the final value of
the evaluation of the program.
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Definition

Interpretation

Interpretation of precondition

ρ̄ |= Φ
def≡ ` Φ{x̄ 7→ ρ̄(x)}

Interpretation of assertion

ρ̄, ρ |= ψ
def≡ ` ψ{x̄ 7→ ρ̄(x)}{x 7→ ρ(x)}

Interpretation of postcondition

ρ̄, v |= Ψ
def≡ ` ψ{x̄ 7→ ρ̄(x)}{res 7→ v}
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Verification Condition generator for While

Given a (annotated) program P a precondition Φ and a
postcondition Ψ we want to find a set of verification conditions
VCgenS(P,Φ,Fpost) such that if all the verification conditions are
provable we have :

ρ̄ |= Φ
P : ρ̄ ⇓S v

}
⇒ ρ̄, v |= Ψ
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Verification Condition generator for While

wpS(skip, ψ) = ψ, ∅ wpS(x := e, ψ) = ψ{x 7→ e}, ∅

wpS(i2, ψ) = φ2, θ2 wpS(i1, φ2) = φ1, θ1
wpS(i1; i2, ψ) = φ1, θ1 ∪ θ2

wpS(it , ψ) = φt , θt wpS(if , ψ) = φf , θf
wpS(if(t){it}{if }, ψ) = (t ⇒ φt) ∧ (¬t ⇒ φf ), θt ∪ θf

P = i ; return e wpS(i ,Ψ{res 7→ e}) = φ, θ

VCgenS(P,Φ,Ψ) = {Φ ⇒ φ{~x 7→ ~̄x}} ∪ θ
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Verification condition of loop

Rule for loop:
{I ∧ t} i {I}

{I} while(t){i} {I ∧ ¬t}

Application:

(I ∧ t) ⇒ φ {φ} i {I}
{I ∧ t} i {I}

{I} while(t){i} {I ∧ ¬t}
(I ∧ ¬t) ⇒ ψ

{I} while(t){i} {ψ}

Verification condition:

wpS(i , I ) = φ, θ

wpS(whileI (t){i}, ψ) = I , {I ⇒ (t ⇒ φ) ∧ (¬t ⇒ ψ)} ∪ θ
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Correctness of the VCgen

Lemma (Correctness)

For all program P if VCgenS(P,Φ,Ψ) are provable then

ρ̄ |= Φ
P : ρ̄ ⇓S v

}
⇒ ρ̄, v |= Ψ
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A VCgen for bytecode

First difference with While: the assertions should refer to position
in the stack

Definition (Bytecode proposition)

Stack expressions ōs ::= os | ē(sv) :: ōs |↑k ōs
Bytecode variables sv ::= x | x̄ | ōs[i ]
Preconditions Φ ::= P(x̄)
Assertions φ, ψ ::= P(sv)
Postconditions Ψ ::= P(x̄ |res)
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Second difference with While: the loop invariants

Definition

An annotated bytecode program is a tuple (Ṗ,Φ,Λ,Ψ) where
Λ is an annotation table.

An annotation table associate to some program points an
assertion (invariant) which should be valid each time the
evaluation of the program reach the corresponding program
point
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Rules of the VCgen

The verification condition generator is defined with two mutually
recursive functions wpl(k) and wpi (k)

wpl(k) compute the weakest precondition of the program
point k using the annotation table:

wpl(k) =

{
φ if Λ(k) = φ

wpi (k)

wpi (k) is the predicate transformer, first the function compute
the weakest precondition of all the successors of the
instruction at k and then transform the resulting conditions
depending on the instruction
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Weakest precondition

Ṗ[k]
Iconst c wpi (k) = wpl(k + 1){os 7→ c :: os}
Ibinop op wpi (k) = wpl(k + 1){os 7→ (os[0] op os[1]) ::↑2 os}
Iload x wpi (k) = wpl(k + 1){os 7→ x :: os}
Istore x wpi (k) = wpl(k + 1){os, x 7→ ↑ os, os[0]}
Igoto l wpi (k) = wpl(l)

Iif cmp l wpi (k) =
(t ⇒ wpl(k + 1){os 7→ ↑2 os})

∧ (¬t ⇒ wpl(l){os 7→ ↑2 os})
where t = os[0] cmp os[1]

Ireturn wpi (k) = Ψ{res 7→ os[0]}
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Definition (VCgen for JVMi)

The set of verification condition of a bytecode program
VCgenB(Ṗ,Φ,Λ,Ψ) is the the smallest set of propositions such
that:

The precondition implies the weakest precondition of the
starting point is in the set:

(Φ ⇒ wpl(0){~x 7→ ~̄x}) ∈ VCgenB(Ṗ,Φ,Λ,Ψ)

For all annotated program point (Λ(k) = Ṗ), the annotation
Ṗ implies the weakest precondition of the instruction at k are
in the set:

∀k,Λ(k) = Ṗ ⇒ (Ṗ ⇒ wpi (k)) ∈ VCgenB(Ṗ,Φ,Λ,Ψ)
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Correctness of the VCgen

Lemma

For all bytecode program Ṗ, precondition Φ, postcondition, Ψ and
annotation table Λ, if the proof obligations of Ṗ are valid (i.e.
` VCgenB(Ṗ,Φ,Λ,Ψ)) then the following property hold:

ρ̄, ρ, os |= wpl(k) ⇒ ρ̄, ρ, os |= wpi (k)

Lemma (Soundness for one execution step)

For all bytecode program Ṗ, precondition Φ, postcondition, Ψ and
annotation table Λ, if the proof obligations of Ṗ are valid (i.e.
` VCgenB(Ṗ,Φ,Λ,Ψ)) then the following property hold:

ρ̄, ρ, os |= wpi (k)
〈k, ρ, os〉 〈k ′, ρ′, os ′〉

}
⇒ ρ̄, ρ′, os ′ |= wpl(k

′)
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Lemma (Soundness of the bytecode VCgen)

For all bytecode program Ṗ, precondition Φ, postcondition, Ψ and
annotation table Λ, if the proof obligations of Ṗ are valid (i.e.
` VCgenB(Ṗ,Φ,Λ,Ψ)) then the following property hold:

ρ̄ |= Φ

Ṗ : ρ̄ ⇓ v

}
⇒ ρ̄, v |= Ψ
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Preservation of proof obligations

Our goal is to show the preservation of proof obligation, i.e. given
an annotated source program and his compiled version there exists
an annotation table Λ such that:

VCgenS(P,Φ,Ψ) = VCgenB([[P]],Φ,Λ,Ψ)

To that end, we extend the compiler for annotated source program.
Only the compilation rule for the while change: each time the
compiler translate a annotated loop starting from position k
(k : [[whileI (t){c}]]), it inserts in the annotation table the invariant
I at position k.
The translation of the pre and postcondition is the identity.
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Preservation of proof obligations

Lemma (Preservation of proof obligations for expressions)

Given a annotated source program P,Φ,Ψ) and its compiled
(Ṗ,Φ,Λ,Ψ). For all sub-expression e, appearing in the program, if
the sequence of code corresponding to the compilation of e start
at position k and terminate at position l (i.e. l = k + |[[e]]|) and
wpl(l) = ψ then wpl(k) = ψ{os 7→ e :: os}.
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Preservation of proof obligations

Lemma (Preservation of proof obligations for instructions)

Given a annotated program (i ′; return e ′,Φ,Ψ) and its compiled
(Ṗ,Φ,Λ,Ψ). For all sub-instruction i ⊆ i ′ which is compiled
starting from position k (i.e Ṗ[k..k + |[[i ]]|] = k : [[i ]]) and for all
postcondition ψ, if wpS(i , ψ) = φ, θ and wpl(k + |[[i ]]|) = ψ then
following properties hold:

wpl(k) = φ

For all C ∈ θ there exists k ′ ∈ [k..k + |[[i ]]|] and loop invariant
I such that Λ(k ′) = I and

C = (I ⇒ wpi (k
′))
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Soundness of the source VCgen

Soundness of the bytecode VCgen
+

Correctness of the compiler
+

Preservation of proof obligation
===========================

Soundness of the source VCgen
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