Introduction to Type Theory
August 2007
Types Summer School
Bertinoro, It

Herman Geuvers
Nijmegen NL

Lecture 2: Dependent Type Theory, Logical Framework

For A\—:

Direct representation (shallow embedding) of logic in type
theory.

e Connectives each have a counterpart in the type theory:
implication ~ arrow type

e Logical rules have their direct counterpart in type theory
A-abstraction ~ implication introduction

application ~ implication elimination

e Context declares assumptions

Second way of interpreting logic in type theory De Bruijn:

Logical framework encoding or deep embedding of logic in type

theory.
e Type theory used as a meta system for encoding ones own logic.

e Choose an appropriate context I'y, in which the logic L (including
its proof rules) is declared.

e Context used as a signature for the logic.

e Use the type system as the ‘meta’ calculus for dealing with
substitution and binding.

proof formula

shallow embedding AT:A.x A—A
deep embedding imp_intr AAMx:T Ax | T(A= A)
Needed:
= . prop—prop—prop

T : prop—type
imp_intr : (A,B:prop)(TA—TB)—T(A= B)
impel : (A,B:prop)T(A=B)—-TA—TB.
Close to a Godel like encoding of predicate logic in IN:

Define a coding fuction |[—| for formulas and define Bew(|¢|,n)
Define mp : IN—IN—IN such that

Vx,y.Bew([¢], z)—Bew([¢ = 9], y)—Bew([), mp(z,y)])

Direct representation Deep encoding

One type system : One logic One type system : Many logics

Logical rules ~ type theoretic rules Logical rules ~ context declarations

Plan:
e First show examples of logics in a logical framework
e Then define precisely the type theory of the logical framework
Use type to denote the universe of types.

The encoding of logics in a logical framework is shown by three
examples:

1. Minimal proposition logic
2. Minimal predicate logic (just {=,V})
3. Untyped A-calculus

Minimal propositional logic
Fix the signature (context) of minimal propositional logic.

prop : type
Imp : prop—prop—prop

Notation: A = B for mpAB
The type prop is the type of ‘names’ of propositions.
NB: A term of type prop can't be inhabited (proved), as it's not a type.

We ‘lift" a name p : prop to the type of its proofs by introducing the

following map:
T : prop—type.

Intended meaning of Tp is ‘the type of proofs of p'.
We interpret ‘p is valid" by “Tp is inhabited’.

To derive Tp we also encode the logical derivation rules

imp_intr : IIp,q : prop.(Tp—Tq)—T(p = q),
imp_el : IIp,q: prop.T(p = q)—Tp—Tgq.

New phenomenon: Il-type:

[lx:A.B(x) =~ the type of functions f such that
fa: B(a) for all a:A

imp_intr takes two (names of) propositions p and ¢ and a term
f: Tp—Tq and returns a term of type T(p = q)

Indeed A = A, becomes valid:
imp_intrA A(\z:T Ax) : T(A= A)

Exercise: Construct a term of type T(A = (B = A))

Define
Y.pROP to be the signature for minimal proposition logic, PROP.

Desired properties of the encoding:

e Adequacy (soundness) of the encoding:
FPROP A = XpROP;@1:Prop; - ..,an:prop = p: T A for some p.

{a ... ,a,} is the set of proposition variables in A.
Proof by induction on the derivation of Fprop A.

e Faithfulness (or completeness) is the converse. It also holds, but
more involved to prove.

Minimal predicate logic over one domain A (just = and V

Signature:
prop : type,
A . type,
T prop—type
f A—A,
R A—A—prop,
= . prop—prop—prop,

imp_intr : IIp,q: prop.(Tp—Tq)—T(p = q),
imp_el : Ilp,q:prop.T(p = q)—Tp—Tq.

Now encode V: V takes a P : A—prop and returns a proposition, so:

V : (A—prop)—prop

Minimal predicate logic over one domain A (just = and V
Signature: XpRED

prop : type,
A : type,
= . Prop—prop—prop,

imp_intr : IIp,q: prop.(Tp—Tq)—T(p = q),
imp_el : Ilp,q:prop.T(p = q)—Tp—Tq.

Now encode V: V takes a P : A—prop and returns a proposition, so:
V : (A—prop)—prop
Universal quantification is translated as follows.

Va:A.(Px) — V(A\x:A.(Px))

10

Intro and elim rules for V:
v : (A—prop)—prop,
Vintr : IIP:A—prop.(Ilz:A.T(Pxz))—T(VP),
Velim : IIP:A—prop. T(VP)—Ilz:A.T(Px).

The proof of
Vz:A(Vz,y:A.Rxy) = Rzz

is now mirrored by the proof-term

Viintr[(- Az:Alimplintr[][] (Ah: T (Ve, y: A. Rxy).

V_elim[_](V_elim[_|hz)z))

We have replaced the instantiations of the II-type by [].
This term is of type

T(V(Az:A.imp(V(Az:A.(V(Ay:A.Rzy))))(Rzz)))

11

Intro and elim rules for V:
v : (A—prop)—prop,
Vintr : IIP:A—prop.(Ilz:A.T(Px))—T(VP),
Velim : IIP:A—prop.T(VP)—1lz:A.T(Pzx).

The proof of
Vz:A(Vx,y:A.Rry) = Rzz

is now mirrored by the proof-term
Viintr[](Az:Adimpintr[][J(AR:T(Vz, y:A. Rxy).
V_elim[](V_elim[_]hz)z))

Exercise: Construct a proof-term that mirrors the (obvious) proof of

Ve(Prx = Qx) = Ve.Px = Vr.Qu

12

Again one can prove adequacy
FPRED ¥ = XPRED,T1:A,...,x,:AFp: Ty, for some p,

where {z1,...,x,} is the set of free variables in .

Faithfulness can be proved as well.

13

Logical Framework, LF, or AP

Derive judgements of the form
I'-M:B

e ['Is a context

e M and B are terms
taken from the set of pseudoterms

T ::= Var | type | kind | TT | Az: T.T | IIz:T. T,

Auxiliary judgement
I+

denoting that I' is a correct context.

14

Derivation rules of LF. (s ranges over {type, kind}.)

'-A:s ['H-
(base) D = (ctxt) if z notin ' (ax)
I'z:AF [' - type : kind

_ I'+- _ I'Nz:AF-B:s I'F A:type
(proj) if :Ael (1)
'-x: A ['-1Ix:A.B :s

)\F,x:AI—M:BFI—H:E:A.B:S I'EM:llxz:tABT'FEFN:A

(app)
['FA\e:A.M : Tlz:A.B ' MN : B[N/x]

()FFMABFkA;i4 .
conv —
TEM:A o

Notation: write A—B for Ilz:A.B if x ¢ FV(B).

15

e [he contexts ZPROP and EPRED are well-formed.

e The II rule allows to form two forms of function types.
- I''c:AFB:s ' A: type
['-1Ix:A.B :s
— With s = type, we can form D—D and IIz:D.x = z, etc.

— With s = kind, we can form D—D—type and prop—type.

16

Untyped A-calculus. Signature > ,mbda:

D : type;
app : D—(D—D);
abs : (D—D)—D.

Encoding of A-terms as terms of type D.

e A variable x in A-calculus becomes = : D in the type system.

e The translation [—] : A — Term(D) is defined as follows.
] =
PQ] = app [P]|Q];
Ax.P] = abs (Az:D.[P]).

Examples: [Ax.xx] := abs(Az:D.app x x)
(Az.zx)(Ay.y)] := app(abs(Az:D.app x x))(abs(Ay:D.y)).

17

Introducing F-equality in Xjambda :

eq:D—D—type.

Notation P = () for eq P ().

Rules for proving equalities.

refl
sym
trans
mon
XI

beta

I[Iz:D.x = z,
Iz, y:D.x = y—y = z,

IIx,y,z:D.x = y—y = z—x = 2,

Hr,2', 2,2/ :D.x =a2'—2z=2'—(app z x) =

I1f, g:D—D.(Ilx:D.(fx) = (g

I1f:D—D.IIz:D.(app(abs f)z) =

)=

(abs f) =

(fz).

app 2’ '
(app ,

(abs g),

18

Adequacy:
P =3 Q — ElambdaﬁUl:Da .. .,a:n:D = p: [P] — [Q], for some P.

Here, x1,...,x, are the free variables in P()

Faithfulness also holds.

19

Signature X5 mbda:

D : type sym : Ilz,y:D.x =y—y ==,
app : D—(D—D) trans : Ilz,y,2:D.x = y—y = z2—x = 2,
abs : (D—D)—D, mon : Ilz,2/,z,2':D.x =2'—2z = 2'—(app z x) = (af
eq : D—D—type, xi : IIf, g:D—D.(Ilx:D.(fx) = (gx))—(abs f) = (a
refl : Tlz:D.x =2, beta : IIf:D—D.Ilx:D.(app(abs f)z) = (fx).

Exercise:
e Prove (i.e. find a proof term of the associated type) (A\z.z)y =5 y

e Add an axiom for n-equality (A\x.Px =, P if z ¢ FV(P)) to the
context and the extensionality rule (VN(MN = PN — M = N))

e Prove that n follows from extensionality.

20

Properties of AP.

e Uniqueness of types
fI'-M:0and I' = M : 7, then o0=3,T.

e Subject Reduction
fI'=M:0and M —p, N, thenI' = N : 0.

e Strong Normalization
If I' = M : o, then all Bn-reductions from M terminate.

Proof of SN is by defining a reduction preserving map from AP to A—.

21

Decidability Questions:

'-M:07 TCP
I'M:? TSP
I'E?:0 TIP

For \P:
e TIP is undecidable

e TCP/TSP: simultaneously with Context checking

22

Type Checking

Define algorithms Ok(—) and Type_(—) simultaneously:
e Ok(—) takes a context and returns ‘true’ or ‘false’
e Type (—) takes a context and a term and returns a term or ‘false’.

The type synthesis algorithm Type_(—) is sound if
Typer(M)=A = T'TFM:A
for all I' and M.

The type synthesis algorithm Type_(—) is complete if
I'-M:A = Typer(M)=p, A
forall ', M and A.

23

Ok(<>) = ‘true’

Ok(T',xz:A) = Typer(A) € {type, kind},
Typep(z) = if Ok(I') and 2:A € I then A else ‘false’,
Typerp(type) = if Ok(I')then kind else ‘false’,
Typep(MN) = if Typepr(M) = C and Typep(N) =D

then if C —gllz:A.Band A =3 D
then B[N/x]| else ‘false’

else ‘false’,

24

Typer(Az:A.M) = if Typer .o(M)=DB

then if Typer(Ilz:A.B) € {type, kind}
then IIx:A.B else ‘false’
else ‘false’,
Typer(llz:A.B) = if Typep(A) = type and Typer ,.4(B) = s

then s else ‘false’

25

Soundness
Typer(M)=A = T'TFM:A

Completeness

I'-M:A = Typer(M)=p, A

As a consequence:
Typep(M) = ‘false’ = M is not typable in T

NB 1. Completeness implies that Type terminates on all well-typed
terms. We want that Type terminates on all pseudo terms.

NB 2. Completeness only makes sense if we have uniqueness of types
(Otherwise: let Type_(—) generate a set of possible types)

26

Termination: we want Type_(—) to terminate on all inputs.
Interesting cases: A-abstraction and application:
Typer(Az:A.M) = if Typer ,.o(M)=DB

then if Typep(Ilx:A.B) € {type, kind}
then I1x:A.B else ‘false’

else ‘false’,

I Recursive call is not on a smaller term!
Replace the side condition
if Typer(Ilz:A.B) € {type, kind}
by
if Typep(A) € {type}

and prove equivalent.

27

Termination: we want Type_(—) to terminate on all inputs.

Interesting cases: A-abstraction and application:

Typer(MN) = if Typepr(M) = C and Typep(N) =D
then if C —gllz:A.Band A =3 D
then B[N/x]| else ‘false’
else ‘false’,
| Need to decide (3-reduction and (3-equality!

For this case, termination follows from soundness of Type and the
decidability of equality on well-typed terms (using SN and CR).

28

Direct representation (shallow embedding) of PRED into AP

Represent both the domains of the logic and the formulas as types.

A . type,
P : A—-type,
R : A—-A—type,

Now =- is represented as — and V is represented as II:

Ve:APx— Ilo:A.Px

Intro and elim rules are just A-abstraction and application

29

Example

A:type, R: A—A—type + Az AN:(Ilz,y:A.Rxy).hzz
[Mz:A.(Ilz,y:A.Rxy)—Rzz2

Exercise: Find terms of the following types (NB — binds strongest)
(Mz:A.Pr—Qx)—(llx:A.Px)—Ilx:A.Qx

and
(Mx:A.Px—Ilz.Rz z)—(llz:A.Px)—1lz2:A.R 2 2).

Also write down the contexts in which these terms are typed.

30

