Isabelle/Isar quick reference

A.1 Proof commands

A.1.1 Primitives and basic syntax

fix \overline{x}	augment context by $\bigwedge \overline{x}$. \Box
assume $a: \overline{\varphi}$	augment context by $\overline{\varphi} \Longrightarrow \Box$
then	indicate forward chaining of facts
have $a: \varphi$	prove local result
show $a: \varphi$	prove local result, refining some goal
using \overline{a}	indicate use of additional facts
unfolding \overline{a}	unfold definitional equations
proof $m_1 \ldots$ qed m_2	indicate proof structure and refinements
{ }	declare explicit blocks
next	switch blocks
note $a = \overline{b}$	reconsider facts
let $p = t$	abbreviate terms by higher-order matching
theory-stmt =	theorem name: prop proof \mid definition \mid
proof =	$prfx^*$ proof method stmt* qed method
(.	
prfx =	apply method
	unfolding name
stmt =	{ stmt ⁻ }
	note $name = name$
	$\begin{array}{l} \text{let } term = term \\ \text{even}^+ \end{array}$
	nx vur
	then? and
	bere name, man maaf
goai =	nave name: prop proof
	snow name: prop prooj

A.1.2 Abbreviations and synonyms

by $m_1 m_2$	\equiv	proof m_1 qed m_2
••	\equiv	by <i>rule</i>
	\equiv	by this
hence	\equiv	then have
\mathbf{thus}	\equiv	then show
from \overline{a}	\equiv	note $this = \overline{a}$ then
with \overline{a}	\equiv	from \overline{a} and this
from this	≡	then
from this have	\equiv	hence
from this show	\equiv	thus

A.1.3 Derived elements

\approx	note $calculation = this$
\approx	note calculation = trans $[OF \ calculation \ this]$
\approx	also from <i>calculation</i>
\approx	note $calculation = calculation$ this
\approx	moreover from calculation
\approx	assume $a: \overline{\varphi}$
\approx	fix x assume $a: x \equiv t$
\approx	\dots fix \overline{x} assume a : $\overline{\varphi}$
\approx	fix \overline{x} assume c : $\overline{\varphi}$
	1 1 1
	wwwwwwwwwwwwwwwwwwwwww

A.1.4 Diagnostic commands

prprint current statethm \overline{a} print theoremsterm tprint termprop φ print meta-level propositiontyp τ print meta-level type

A.2 Proof methods

Single steps (forward-chaining facts)

assumption	apply some assumption
this	apply current facts
$rule \ \overline{a}$	apply some rule
rule	apply standard rule (default for proof)
contradiction	apply \neg elimination rule (any order)
cases t	case analysis (provides cases)
induct \overline{x}	proof by induction (provides cases)

Repeated steps (inserting facts)

_	no rules
$intro \ \overline{a}$	introduction rules
$intro_classes$	class introduction rules
$elim \ \overline{a}$	elimination rules
unfold \overline{a}	definitions

Automated proof tools (inserting facts, or even prems!)

rules	intuitionistic proof search
blast, fast	Classical Reasoner
simp, simp_all	Simplifier (+ Splitter)
auto, force	Simplifier + Classical Reasoner
arith	Arithmetic procedure

A.3 Attributes

Operations

$OF \ \overline{a}$	rule resolved with facts (skipping "_")
of \overline{t}	rule instantiated with terms (skipping "_")
where $\overline{x} = \overline{t}$	rule instantiated with terms, by variable name
symmetric	resolution with symmetry rule
$THEN \ b$	resolution with another rule
$rule_format$	result put into standard rule format
$elim_format$	destruct rule turned into elimination rule format

Declarations

simp	Simplifier rule
intro, elim, dest	Pure or Classical Reasoner rule
$i\!f\!f$	Simplifier + Classical Reasoner rule
split	case split rule
trans	transitivity rule
sym	symmetry rule

A.4 Rule declarations and methods

	rule	rules	blast etc.	simp etc.	<i>auto</i> etc.
elim! intro! (Pure)	×	Х			
<i>elim intro</i> (Pure)	\times	×			
elim! intro!	×		X		X
elim intro	\times		×		Х
$i\!f\!f$	×		X	×	X
$i\!f\!f$?	\times				
elim? intro?	×				
simp				×	Х
cong				×	Х
split				×	×

A.5 Emulating tactic scripts

A.5.1 Commands

apply m	apply proof method at initial position
apply_end (m)	apply proof method near terminal position
done	complete proof
defer n	move subgoal to end
$\mathbf{prefer} \ n$	move subgoal to beginning
back	backtrack last command

A.5.2 Methods

rule_tac insts	resolution (with instantiation)
erule_tac insts	elim-resolution (with instantiation)
drule_tac insts	destruct-resolution (with instantiation)
frule_tac insts	forward-resolution (with instantiation)
cut_tac insts	insert facts (with instantiation)
thin_tac φ	delete assumptions
$subgoal_tac \ \varphi$	new claims
$rename_tac \ \overline{x}$	rename suffix of goal parameters
$rotate_tac n$	rotate assumptions of goal
tactic text	arbitrary ML tactic
case_tac t	exhaustion (datatypes)
induct_tac \overline{x}	induction (datatypes)
$ind_cases t$	exhaustion + simplification (inductive sets)