
Getting started with Isabelle/Isar

Exercises

Makarius Wenzel
TU München

August 2007

Contents

1 Summation Formulae 1
1.1 Polynomial sums . 1
1.2 Division and divisibility . 2

2 Porting tactic scripts 3

3 Context-Free Grammars 4
3.1 Two grammars . 4
3.2 Equivalence proof . 4

4 Compilation with Side Effects 5
4.1 Expressions . 5
4.2 Machine instructions . 6
4.3 Compilation . 6

1 Summation Formulae

1.1 Polynomial sums

B Produce structured proofs of the following theorems, using induction and
calculational reasoning in Isar.

Note that existing tactic scripts are of limited use in reconstructing struc-
tured proofs; nevertheless the hints of automated steps below can be re-used
to finish trivial sub-problems. The

∑
symbol can be entered as “\<Sum>”;

recall that numerals in Isabelle/HOL are polymorphic.

theorem
fixes n :: nat
shows "2 * (

∑
i=0..n. i) = n * (n + 1)"

by (induct n) simp_all

1

theorem
fixes n :: nat
shows "(

∑
i=0..<n. 2 * i + 1) = n2"

by (induct n) (simp_all add: power_eq_if nat_distrib)

theorem
fixes n :: nat
shows "(

∑
i=0..<n. 2^i) = 2^n - (1::nat)"

by (induct n) (simp_all split: nat_diff_split)

theorem
fixes n :: nat
shows "2 * (

∑
i=0..<n. 3^i) = 3^n - (1::nat)"

by (induct n) (simp_all add: nat_distrib)

theorem
fixes n :: nat
assumes "0 < k"
shows "(k - 1) * (

∑
i=0..<n. k^i) = k^n - (1::nat)"

by (induct n) (insert ‘0 < k‘, simp_all add: nat_distrib)

B Try explicit statements vs. term abbreviations: implicit “ . . .”, ?case,
?thesis as well as explicit is/let pattern matching.

B Try explicit fix/assume vs. implicit case abbreviations.

B Which facts are relevant to solve local problems automatically?

1.2 Division and divisibility

The following statements are more conventional, using explicit division on
the RHS.

theorem
fixes n :: nat
shows "(

∑
i=0..n. i) = n * (n + 1) div 2"

Here we state divisibility in the result expression explicitly:

theorem
fixes n :: nat
shows "∃ k. n * (n + 1) = 2 * k"

2

B Re-use your structured proof texts from above, but not the theorems.

2 Porting tactic scripts

B Turn your Isabelle tactic scripts from yesterday’s exercises into Isar proof
texts. Observe the following hints on producing “proper Isar” by avoiding
certain tactical features of the input language of Isabelle/Isar.

• apply and done as the main constituents of unstructured tactic scripts
need to be replaced by explicit proof structure. Note that typical
two-step proofs of the decompose–finish form (such as induct–auto or
cases–auto or rule–auto) may be turned into proper Isar using by
with two methods: “by initial_method terminal_method”.

• prefer and defer, as well as any goal addressing within tactic expres-
sions should be replaced by properly laid out sub-proofs. Note that
Isar is tolerant wrt. the order of sub-goals tackled in multiple fix–
assume–show patterns.

• Methods ending with _tac (e.g. rule_tac, induct_tac) refer to tactic
emulations that are inappropriate in structured Isar texts, because
they allows to address sub-goals numerically, or refer to hidden parts
of a sub-goal in the visible text (via instantiation) etc.

Proper methods rule, cases, and induct are able to replace more de-
tailed tactic specifications, because of the richer contextual informa-
tion available in Isar proofs (with explicit statements, indication of
previous facts via then, from, using etc.).

• There is no need to present auxiliary results in “normal form” of cer-
tain automated tools. In proper Isar, intermediate results may be
easily inserted into the course of reasoning using have or obtain, ex-
pressed in the most natural form of the problem at hand. Then au-
tomated tools can deal with normalization and finishing in terminal
proof steps: “by auto” or “by simp” etc.

• Avoid backwards reasoning with transitivity rules, but express single-
step calculations in forward-style via also and finally.

• Avoid explicit instantiations of rules, but state the fully instantiated
propositions as intermediate results as required.

3

3 Context-Free Grammars

This exercise is concerned with context-free grammars (CFGs) being defined
as inductive sets (see also section 7.4 in the Isabelle/HOL tutorial, and 4.5
of http://isabelle.in.tum.de/exercises/).

3.1 Two grammars

The most natural definition of valid sequences of parentheses is this:

S → ε | ′(′ S ′)′ | S S

where ε is the empty word.
A second, somewhat unusual grammar is the following one:

T → ε | T ′(′ T ′)′

B Model both grammars as inductive sets S and T and prove S = T.

The alphabet:

datatype alpha = A | B

Standard grammar:

consts S :: "alpha list set"

inductive S
intros
S1: "[] ∈ S"
S2: "w ∈ S =⇒ [A] @ w @ [B] ∈ S"
S3: "v ∈ S =⇒ w ∈ S =⇒ v @ w ∈ S"

Nonstandard grammar:

consts T :: "alpha list set"

inductive T
intros
T1: "[] ∈ T"
T23: "v ∈ T =⇒ w ∈ T =⇒ v @ ([A] @ w @ [B]) ∈ T"

3.2 Equivalence proof

lemma T_in_S:
assumes "w ∈ T"
shows "w ∈ S"

lemma S_in_T:
assumes "w ∈ S"

4

http://isabelle.in.tum.de/exercises/

shows "w ∈ T"

theorem "S = T"

4 Compilation with Side Effects

This exercise extends the compiler example in Section 3.3 of the Isabelle/HOL
tutorial: expressions may have side effects; see also 6.3 of http://isabelle.in.
tum.de/exercises/.

4.1 Expressions

B Complete the subsequent definitions of expressions and evaluation within
an environment of variable assignments.

types ’v binop = "’v ⇒ ’v ⇒ ’v"

datatype (’a, ’v) exp =
Const ’v

| Var ’a
| Binop "’v binop" "(’a, ’v) exp" "(’a, ’v) exp"
| Assign ’a "(’a, ’v) exp"

consts
val :: "(’a, ’v) exp ⇒ (’a ⇒ ’v) ⇒ ’v × (’a ⇒ ’v)"

primrec
"val (Const c) env = (c, env)"
"val (Var x) env = (env x, env)"
"val (Binop f e1 e2) env =

(let (x, env1) = val e1 env;
(y, env2) = val e2 env1

in (f x y, env2))"
"val (Assign a e) env =

(let (x, env’) = val e env
in (x, env’ (a := x)))"

Pure expressions are exactly those without syntactical occurrence of assign-
ment.

consts
pure :: "(’a, ’v) exp ⇒ bool"

B Produce a meaningful structured proof that evaluation of pure expressions
does not change the environment. (Technically, this is a trivial induction.)

theorem "pure e =⇒ snd (val e env) = env"

5

http://isabelle.in.tum.de/exercises/
http://isabelle.in.tum.de/exercises/

4.2 Machine instructions

B Observe the subsequent definitions of machine instructions and execution
of instructions in an environment.

datatype (’a, ’v) instr =
CLoad ’v

| VLoad ’a
| Store ’a
| Apply "’v binop"

consts
exec :: "(’a, ’v) instr list ⇒ ’v list ⇒ (’a ⇒ ’v) ⇒
’v list × (’a ⇒ ’v)"

primrec
"exec [] vs hp = (vs, hp)"
"exec (i # is) vs hp =
(case i of
CLoad v ⇒ exec is (v # vs) hp

| VLoad a ⇒ exec is (hp a # vs) hp
| Store a ⇒ exec is vs (hp (a:= hd vs))
| Apply f ⇒ exec is (f (hd (tl vs)) (hd vs) # tl (tl vs)) hp)"

lemma
"exec [CLoad (3::nat),

VLoad x,
CLoad 4,
Apply (op *),
Apply (op +)]

[] (λx. 0) = ([3], λx. 0)"
by simp

4.3 Compilation

B Complete the definition of compilation of expressions. Produce a struc-
tured proof for the main correctness statement.

consts
compile :: "(’a, ’v) exp ⇒ (’a, ’v) instr list"

theorem correctness:
"exec (compile e) [] s = ([fst (val e s)], snd (val e s))"

6

	Summation Formulae
	Polynomial sums
	Division and divisibility

	Porting tactic scripts
	Context-Free Grammars
	Two grammars
	Equivalence proof

	Compilation with Side Effects
	Expressions
	Machine instructions
	Compilation

