
Isabelle/HOL Exercises

Trees, Inductive Data Types

Representation of Propositional Formulae by Polyno-

mials

Let the following data type for propositional formulae be given:

datatype form = T | Var nat | And form form | Xor form form

Here T denotes a formula that is always true, Var n denotes a propositional variable, its
name given by a natural number, And f1 f2 denotes the AND combination, and Xor f1

f2 the XOR (exclusive or) combination of two formulae. A constructor F for a formula
that is always false is not necessary, since F can be expressed by Xor T T.

Exercise 1: Define a function

consts evalf :: "(nat ⇒ bool) ⇒ form ⇒ bool"

that evaluates a formula under a given variable assignment.

Propositional formulae can be represented by so-called polynomials. A polynomial is a list
of lists of propositional variables, i.e. an element of type nat list list. The inner lists
(the so-called monomials) are interpreted as conjunctive combination of variables, whereas
the outer list is interpreted as exclusive-or combination of the inner lists.

Exercise 2: Define two functions

consts
evalm :: "(nat ⇒ bool) ⇒ nat list ⇒ bool"

evalp :: "(nat ⇒ bool) ⇒ nat list list ⇒ bool"

for evaluation of monomials and polynomials under a given variable assignment. In parti-
cular think about how empty lists have to be evaluated.

Exercise 3: Define a function

consts poly :: "form ⇒ nat list list"

that turns a formula into a polynomial. You will need an auxiliary function

consts mulpp :: "nat list list ⇒ nat list list ⇒ nat list list"

to “multiply” two polynomials, i.e. to compute

((v1
1 � · · · � v1

m1
)⊕ · · · ⊕ (vk

1 � · · · � vk
mk

))� ((w1
1 � · · · � w1

n1
)⊕ · · · ⊕ (wl

1 � · · · � wl
nl

))

where ⊕ denotes “exclusive or”, and � denotes “and”. This is done using the usual calcu-
lation rules for addition and multiplication.

Exercise 4: Now show correctness of your function poly :

theorem poly_correct: "evalf e f = evalp e (poly f)"

It is useful to prove a similar correctness theorem for mulpp first.

2

