
Introduction to the MIZAR system
Adam Naumowicz

adamn@mizar.org

Institute of Computer Science

University of Bialystok, Poland

Outline TYPES Summer School, Bertinoro, August 25, 2007

• What is MIZAR ?

– A bit of history

– Language – system – database

– Related projects

• Theoretical foundations

– The system of semantic correlates in MIZAR

– Proof strategies

– Types in MIZAR

– Other advanced language constructs

• Practical usage

– Running the system

– Importing notions from the library (building the environment)

– Enhancing MIZAR texts

• Exercises

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –2–

Outline TYPES Summer School, Bertinoro, August 25, 2007

• What is MIZAR ?

– A bit of history

– Language – system – database

– Related projects

• Theoretical foundations

– The system of semantic correlates in MIZAR

– Proof strategies

– Types in MIZAR

– Other advanced language constructs

• Practical usage

– Running the system

– Importing notions from the library (building the environment)

– Enhancing MIZAR texts

• Exercises

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –2-a–

Outline TYPES Summer School, Bertinoro, August 25, 2007

• What is MIZAR ?

– A bit of history

– Language – system – database

– Related projects

• Theoretical foundations

– The system of semantic correlates in MIZAR

– Proof strategies

– Types in MIZAR

– Other advanced language constructs

• Practical usage

– Running the system

– Importing notions from the library (building the environment)

– Enhancing MIZAR texts

• Exercises

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –2-b–

Outline TYPES Summer School, Bertinoro, August 25, 2007

• What is MIZAR ?

– A bit of history

– Language – system – database

– Related projects

• Theoretical foundations

– The system of semantic correlates in MIZAR

– Proof strategies

– Types in MIZAR

– Other advanced language constructs

• Practical usage

– Running the system

– Importing notions from the library (building the environment)

– Enhancing MIZAR texts

• Exercises

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –2-c–

Outline TYPES Summer School, Bertinoro, August 25, 2007

• What is MIZAR ?

– A bit of history

– Language – system – database

– Related projects

• Theoretical foundations

– The system of semantic correlates in MIZAR

– Proof strategies

– Types in MIZAR

– Other advanced language constructs

• Practical usage

– Running the system

– Importing notions from the library (building the environment)

– Enhancing MIZAR texts

• Exercises

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –2-d–

Outline TYPES Summer School, Bertinoro, August 25, 2007

• What is MIZAR ?

– A bit of history

– Language – system – database

– Related projects

• Theoretical foundations

– The system of semantic correlates in MIZAR

– Proof strategies

– Types in MIZAR

– Other advanced language constructs

• Practical usage

– Running the system

– Importing notions from the library (building the environment)

– Enhancing MIZAR texts

• Exercises

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –2-e–

Outline TYPES Summer School, Bertinoro, August 25, 2007

• What is MIZAR ?

– A bit of history

– Language – system – database

– Related projects

• Theoretical foundations

– The system of semantic correlates in MIZAR

– Proof strategies

– Types in MIZAR

– Other advanced language constructs

• Practical usage

– Running the system

– Importing notions from the library (building the environment)

– Enhancing MIZAR texts

• Exercises

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –2-f–

Outline TYPES Summer School, Bertinoro, August 25, 2007

• What is MIZAR ?

– A bit of history

– Language – system – database

– Related projects

• Theoretical foundations

– The system of semantic correlates in MIZAR

– Proof strategies

– Types in MIZAR

– Other advanced language constructs

• Practical usage

– Running the system

– Importing notions from the library (building the environment)

– Enhancing MIZAR texts

• Exercises

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –2-g–

What is MIZAR ? TYPES Summer School, Bertinoro, August 25, 2007

• The MIZAR project started around 1973 as an attempt to reconstruct mathematical

vernacular in a computer-oriented environment

– A formal language for writing mathematical proofs

– A computer system for verifying correctness of proofs

– The library of formalized mathematics – MIZAR Mathematical Library (MML)

• For more information see http://mizar.org

– The language’s grammar

– The bibliography of the MIZAR project

– Free download of binaries for several platforms

– Discussion forum(s)

– MIZAR User Service - e-mail contact point

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –3–

What is MIZAR ? TYPES Summer School, Bertinoro, August 25, 2007

• The MIZAR project started around 1973 as an attempt to reconstruct mathematical

vernacular in a computer-oriented environment

– A formal language for writing mathematical proofs

– A computer system for verifying correctness of proofs

– The library of formalized mathematics – MIZAR Mathematical Library (MML)

• For more information see http://mizar.org

– The language’s grammar

– The bibliography of the MIZAR project

– Free download of binaries for several platforms

– Discussion forum(s)

– MIZAR User Service - e-mail contact point

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –3-a–

What is MIZAR ? TYPES Summer School, Bertinoro, August 25, 2007

• The MIZAR project started around 1973 as an attempt to reconstruct mathematical

vernacular in a computer-oriented environment

– A formal language for writing mathematical proofs

– A computer system for verifying correctness of proofs

– The library of formalized mathematics – MIZAR Mathematical Library (MML)

• For more information see http://mizar.org

– The language’s grammar

– The bibliography of the MIZAR project

– Free download of binaries for several platforms

– Discussion forum(s)

– MIZAR User Service - e-mail contact point

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –3-b–

What is MIZAR ? TYPES Summer School, Bertinoro, August 25, 2007

• The MIZAR project started around 1973 as an attempt to reconstruct mathematical

vernacular in a computer-oriented environment

– A formal language for writing mathematical proofs

– A computer system for verifying correctness of proofs

– The library of formalized mathematics – MIZAR Mathematical Library (MML)

• For more information see http://mizar.org

– The language’s grammar

– The bibliography of the MIZAR project

– Free download of binaries for several platforms

– Discussion forum(s)

– MIZAR User Service - e-mail contact point

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –3-c–

What is MIZAR ? TYPES Summer School, Bertinoro, August 25, 2007

• The MIZAR project started around 1973 as an attempt to reconstruct mathematical

vernacular in a computer-oriented environment

– A formal language for writing mathematical proofs

– A computer system for verifying correctness of proofs

– The library of formalized mathematics – MIZAR Mathematical Library (MML)

• For more information see http://mizar.org

– The language’s grammar

– The bibliography of the MIZAR project

– Free download of binaries for several platforms

– Discussion forum(s)

– MIZAR User Service - e-mail contact point

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –3-d–

The MIZAR language TYPES Summer School, Bertinoro, August 25, 2007

• The proof language is designed to be as close as possible to “mathematical vernacular”

– It is a reconstruction of the language of mathematics

– It forms “a subset” of standard English used in mathematical texts

– It is based on a declarative style of natural deduction

– There are 27 special symbols, 110 reserved words

– The language is highly structured - to ensure producing rigorous and semantically

unambiguous texts

– It allows prefix, postfix, infix notations for predicates as well as parenthetical notations

for functors

• Similar ideas:

– MV (Mathematical Vernacular - N. G. de Bruijn)

– CML (Common Mathematical Language)

– QED Project (http://www-unix.mcs.anl.gov/qed/) - The QED Manifesto from 1994

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –4–

The MIZAR language TYPES Summer School, Bertinoro, August 25, 2007

• The proof language is designed to be as close as possible to “mathematical vernacular”

– It is a reconstruction of the language of mathematics

– It forms “a subset” of standard English used in mathematical texts

– It is based on a declarative style of natural deduction

– There are 27 special symbols, 110 reserved words

– The language is highly structured - to ensure producing rigorous and semantically

unambiguous texts

– It allows prefix, postfix, infix notations for predicates as well as parenthetical notations

for functors

• Similar ideas:

– MV (Mathematical Vernacular - N. G. de Bruijn)

– CML (Common Mathematical Language)

– QED Project (http://www-unix.mcs.anl.gov/qed/) - The QED Manifesto from 1994

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –4-a–

The MIZAR language TYPES Summer School, Bertinoro, August 25, 2007

• The proof language is designed to be as close as possible to “mathematical vernacular”

– It is a reconstruction of the language of mathematics

– It forms “a subset” of standard English used in mathematical texts

– It is based on a declarative style of natural deduction

– There are 27 special symbols, 110 reserved words

– The language is highly structured - to ensure producing rigorous and semantically

unambiguous texts

– It allows prefix, postfix, infix notations for predicates as well as parenthetical notations

for functors

• Similar ideas:

– MV (Mathematical Vernacular - N. G. de Bruijn)

– CML (Common Mathematical Language)

– QED Project (http://www-unix.mcs.anl.gov/qed/) - The QED Manifesto from 1994

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –4-b–

Key features of the MIZAR system TYPES Summer School, Bertinoro, August 25, 2007

• The system uses classical first-order logic

• Statements with free second-order variables (e.g. the induction scheme) are supported

• The system used natural deduction for doing conditional proofs

– S. Jaśkowski, On the rules of supposition formal logic. Studia Logica, 1, 1934.

– F. B. Fitch, Symbolic Logic. An Introduction. The Ronald Press Company, 1952.

– K. Ono, On a practical way of describing formal deductions. Nagoya Mathematical

Journal, 21, 1962.

• The system uses a declarative style of writing proofs (mostly forward reasoning) -

resembling mathematical practice

• A system of semantic correlates is used for processing formulas (as introduced by R.

Suszko in his investigations of non-Fregean logic)

• The system as such is independent of the axioms of set theory

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –5–

Key features of the MIZAR system TYPES Summer School, Bertinoro, August 25, 2007

• The system uses classical first-order logic

• Statements with free second-order variables (e.g. the induction scheme) are supported

• The system used natural deduction for doing conditional proofs

– S. Jaśkowski, On the rules of supposition formal logic. Studia Logica, 1, 1934.

– F. B. Fitch, Symbolic Logic. An Introduction. The Ronald Press Company, 1952.

– K. Ono, On a practical way of describing formal deductions. Nagoya Mathematical

Journal, 21, 1962.

• The system uses a declarative style of writing proofs (mostly forward reasoning) -

resembling mathematical practice

• A system of semantic correlates is used for processing formulas (as introduced by R.

Suszko in his investigations of non-Fregean logic)

• The system as such is independent of the axioms of set theory

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –5-a–

Key features of the MIZAR system TYPES Summer School, Bertinoro, August 25, 2007

• The system uses classical first-order logic

• Statements with free second-order variables (e.g. the induction scheme) are supported

• The system used natural deduction for doing conditional proofs

– S. Jaśkowski, On the rules of supposition formal logic. Studia Logica, 1, 1934.

– F. B. Fitch, Symbolic Logic. An Introduction. The Ronald Press Company, 1952.

– K. Ono, On a practical way of describing formal deductions. Nagoya Mathematical

Journal, 21, 1962.

• The system uses a declarative style of writing proofs (mostly forward reasoning) -

resembling mathematical practice

• A system of semantic correlates is used for processing formulas (as introduced by R.

Suszko in his investigations of non-Fregean logic)

• The system as such is independent of the axioms of set theory

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –5-b–

Key features of the MIZAR system TYPES Summer School, Bertinoro, August 25, 2007

• The system uses classical first-order logic

• Statements with free second-order variables (e.g. the induction scheme) are supported

• The system used natural deduction for doing conditional proofs

– S. Jaśkowski, On the rules of supposition formal logic. Studia Logica, 1, 1934.

– F. B. Fitch, Symbolic Logic. An Introduction. The Ronald Press Company, 1952.

– K. Ono, On a practical way of describing formal deductions. Nagoya Mathematical

Journal, 21, 1962.

• The system uses a declarative style of writing proofs (mostly forward reasoning) -

resembling mathematical practice

• A system of semantic correlates is used for processing formulas (as introduced by R.

Suszko in his investigations of non-Fregean logic)

• The system as such is independent of the axioms of set theory

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –5-c–

Key features of the MIZAR system TYPES Summer School, Bertinoro, August 25, 2007

• The system uses classical first-order logic

• Statements with free second-order variables (e.g. the induction scheme) are supported

• The system used natural deduction for doing conditional proofs

– S. Jaśkowski, On the rules of supposition formal logic. Studia Logica, 1, 1934.

– F. B. Fitch, Symbolic Logic. An Introduction. The Ronald Press Company, 1952.

– K. Ono, On a practical way of describing formal deductions. Nagoya Mathematical

Journal, 21, 1962.

• The system uses a declarative style of writing proofs (mostly forward reasoning) -

resembling mathematical practice

• A system of semantic correlates is used for processing formulas (as introduced by R.

Suszko in his investigations of non-Fregean logic)

• The system as such is independent of the axioms of set theory

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –5-d–

Key features of the MIZAR system TYPES Summer School, Bertinoro, August 25, 2007

• The system uses classical first-order logic

• Statements with free second-order variables (e.g. the induction scheme) are supported

• The system used natural deduction for doing conditional proofs

– S. Jaśkowski, On the rules of supposition formal logic. Studia Logica, 1, 1934.

– F. B. Fitch, Symbolic Logic. An Introduction. The Ronald Press Company, 1952.

– K. Ono, On a practical way of describing formal deductions. Nagoya Mathematical

Journal, 21, 1962.

• The system uses a declarative style of writing proofs (mostly forward reasoning) -

resembling mathematical practice

• A system of semantic correlates is used for processing formulas (as introduced by R.

Suszko in his investigations of non-Fregean logic)

• The system as such is independent of the axioms of set theory

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –5-e–

Key features of the MIZAR system TYPES Summer School, Bertinoro, August 25, 2007

• The system uses classical first-order logic

• Statements with free second-order variables (e.g. the induction scheme) are supported

• The system used natural deduction for doing conditional proofs

– S. Jaśkowski, On the rules of supposition formal logic. Studia Logica, 1, 1934.

– F. B. Fitch, Symbolic Logic. An Introduction. The Ronald Press Company, 1952.

– K. Ono, On a practical way of describing formal deductions. Nagoya Mathematical

Journal, 21, 1962.

• The system uses a declarative style of writing proofs (mostly forward reasoning) -

resembling mathematical practice

• A system of semantic correlates is used for processing formulas (as introduced by R.

Suszko in his investigations of non-Fregean logic)

• The system as such is independent of the axioms of set theory

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –5-f–

Related systems TYPES Summer School, Bertinoro, August 25, 2007

Systems influenced by MIZAR comprise:

• Mizar mode for HOL (J. Harrison)

• Declare (D. Syme)

• Mizar-light for HOL-light (F. Wiedijk)

• Isar (M. Wenzel)

• MMode/DPL - declarative proof language for Coq (P. Corbineau)

• ...

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –6–

MIZAR Mathematical Library MML TYPES Summer School, Bertinoro, August 25, 2007

“A good system without a library is useless. A good library for a bad system is still very

interesting... So the library is what counts.” (F. Wiedijk, Estimating the Cost of a Standard

Library for a Mathematical Proof Checker.)

• A systematic collection of articles started around 1989

• Current MML version - 4.84.971

– includes 971 articles written by 180 authors

– 42150 theorems

– 7926 definitions

– 724 schemes

– 6856 registrations

• The library is based on the axioms of Tarski-Grothendieck set theory

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –7–

Basic kinds of MIZAR formulas TYPES Summer School, Bertinoro, August 25, 2007

⊥ contradiction

¬α not α

α ∧ β α & β

α ∨ β α or β

α→ β α implies β

α↔ β α iff β

∀xα(x) for x holds α(x)

∃xα(x) ex x st α(x)

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –8–

MIZAR’s main logical module - the CHECKER TYPES Summer School, Bertinoro, August 25, 2007

• There is no set of inference rules - M. Davis’s concept of “obviousness w.r.t an algorithm”

• The de Bruijn criterion of a small checker is not preserved

• The deductive power is still being strengthened (CAS and DS integration)

– new computation mechanisms added

– more automation in the equality calculus

– experiments with more than one general statement in an inference (“Scordev’s device”)

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –9–

MIZAR as a disprover TYPES Summer School, Bertinoro, August 25, 2007

An inference of the form
α1, . . . , αk

β

is transformed to
α1, . . . , αk,¬β

⊥
A disjunctive normal form (DNF) of the premises is then created and the system tries to refute

it
([¬]α1,1 ∧ . . . ∧ [¬]α1,k1) ∨ . . . ∨ ([¬]αn,1 ∧ . . . ∧ [¬]αn,kn)

⊥
where αi,j are atomic or universal sentences (negated or not) - for the inference to be

accepted, all disjuncts must be refuted. So in fact n inferences are checked

[¬]α1,1 ∧ . . . ∧ [¬]α1,k1

⊥
...

[¬]αn,1 ∧ . . . ∧ [¬]αn,kn

⊥

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –10–

The system of MIZAR’s semantic correlates TYPES Summer School, Bertinoro, August 25, 2007

Internally, all MIZAR formulas are expressed in a simplified “canonical” form - their semantic

correlates using only VERUM, not, & and for _ holds _ together with atomic formulas.

• VERUM is the neutral element of the conjunction

• Double negation rule is used

• de Morgan’s laws are used for disjunction and existential quantifiers

• α implies β is changed into not(α & not β)

• α iff β is changed into α implies β & β implies α, i.e. not(α & not β) &

not(β & not α)

• conjunction is associative but not commutative

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –11–

Basic proof strategies TYPES Summer School, Bertinoro, August 25, 2007

• Propositional calculus

– Deduction rule

A implies B :: thesis = A implies B

proof

assume A; :: thesis = B

...

thus B; :: thesis = {}

end;

– Adjunction rule

A & B :: thesis = A & B

proof

...

thus A; :: thesis = B

...

thus B; :: thesis = {}

end;

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –12–

Basic proof strategies TYPES Summer School, Bertinoro, August 25, 2007

• Propositional calculus

– Deduction rule

A implies B :: thesis = A implies B

proof

assume A; :: thesis = B

...

thus B; :: thesis = {}

end;

– Adjunction rule

A & B :: thesis = A & B

proof

...

thus A; :: thesis = B

...

thus B; :: thesis = {}

end;

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –12-a–

Basic proof strategies TYPES Summer School, Bertinoro, August 25, 2007

• Propositional calculus

– Deduction rule

A implies B :: thesis = A implies B

proof

assume A; :: thesis = B

...

thus B; :: thesis = {}

end;

– Adjunction rule

A & B :: thesis = A & B

proof

...

thus A; :: thesis = B

...

thus B; :: thesis = {}

end;

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –12-b–

Basic proof strategies – ctd. TYPES Summer School, Bertinoro, August 25, 2007

• Quantifier calculus

– Generalization rule

for x holds A(x) :: thesis = for x holds A(x)

proof

let a; :: thesis = A(a)

...

thus A(a); :: thesis = {}

end;

– Exemplification rule

ex x st A(x) :: thesis = ex x st A(x)

proof

take a; :: thesis = A(a)

...

thus A(a); :: thesis = {}

end;

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –13–

Basic proof strategies – ctd. TYPES Summer School, Bertinoro, August 25, 2007

• Quantifier calculus

– Generalization rule

for x holds A(x) :: thesis = for x holds A(x)

proof

let a; :: thesis = A(a)

...

thus A(a); :: thesis = {}

end;

– Exemplification rule

ex x st A(x) :: thesis = ex x st A(x)

proof

take a; :: thesis = A(a)

...

thus A(a); :: thesis = {}

end;

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –13-a–

Basic proof strategies – ctd. TYPES Summer School, Bertinoro, August 25, 2007

• Quantifier calculus

– Generalization rule

for x holds A(x) :: thesis = for x holds A(x)

proof

let a; :: thesis = A(a)

...

thus A(a); :: thesis = {}

end;

– Exemplification rule

ex x st A(x) :: thesis = ex x st A(x)

proof

take a; :: thesis = A(a)

...

thus A(a); :: thesis = {}

end;

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –13-b–

More proof strategies TYPES Summer School, Bertinoro, August 25, 2007

A :: thesis = A

proof

assume not A; :: thesis = contradiction

...

thus contradiction; :: thesis = {}

end;

... :: thesis = ...

proof

assume not thesis; :: thesis = contradiction

...

thus contradiction; :: thesis = {}

end;

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –14–

More proof strategies – ctd. TYPES Summer School, Bertinoro, August 25, 2007

... :: thesis = ...

proof

assume not thesis; :: thesis = contradiction

...

thus thesis; :: thesis = {}

end;

A & B implies C :: thesis = A & B implies C

proof

assume A; :: thesis = B implies C

...

assume B; :: thesis = C

...

thus C; :: thesis = {}

end;

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –15–

More proof strategies – ctd. TYPES Summer School, Bertinoro, August 25, 2007

A implies (B implies C):: thesis = A implies (B implies C)

proof

assume A; :: thesis = B implies C

...

assume B; :: thesis = C

...

thus C; :: thesis = {}

end;

A or B or C or D :: thesis = A or B or C or D

proof

assume not A :: thesis = B or C or D

...

assume not B; :: thesis = C or D

...

thus C or D; :: thesis = {}

end;

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –16–

Types in MIZAR TYPES Summer School, Bertinoro, August 25, 2007

• A hierarchy based on the “widening” relation with set being the widest type

Function of X,Y� PartFunc of X,Y� Relation of X,Y�
Subset of [:X,Y:]� Element of bool [:X,Y:]� set

• MIZAR types are refined using adjectives (“key linguistic entities used to represent

mathematical concepts” according to N.G. de Bruijn)

one-to-one Function of X,Y

finite non empty proper Subset of X

• adjectives are processed to enable automatic deriving of type information (so called

“registrations”)

• Types also play a syntactic role - e.g. enable overloading of notations

• The type of a variable can be “reserved” and then not used explicitely

• MIZAR types are required to have a non-empty denotation (existence must be proved

when defining a type)

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –17–

Types in MIZAR – ctd. TYPES Summer School, Bertinoro, August 25, 2007

• Dependent types

definition

let C be Category

a,b,c be Object of C,

f be Morphism of a,b,

g be Morphism of b,c;

assume Hom(a,b)<>{} & Hom(b,c)<>{};

func g*f -> Morphism of a,c equals

:: CAT_1:def 13

g*f;

...correctness...

end;

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –18–

Types in MIZAR – ctd. TYPES Summer School, Bertinoro, August 25, 2007

• Dependent types

definition

let C be Category

a,b,c be Object of C,

f be Morphism of a,b,

g be Morphism of b,c;

assume Hom(a,b)<>{} & Hom(b,c)<>{};

func g*f -> Morphism of a,c equals

:: CAT_1:def 13

g*f;

...correctness...

end;

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –18-a–

Types in MIZAR – ctd. TYPES Summer School, Bertinoro, August 25, 2007

• Structural types (with a sort of polimorfic inheritance) - abstract vs. concrete part of MML

definition

let F be 1-sorted;

struct(LoopStr) VectSpStr over F

(#

carrier -> set,

add -> BinOp of the carrier,

ZeroF -> Element of the carrier,

lmult -> Function of

[:the carrier of F,the carrier:],the carrier

#);

end;

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –19–

Types in MIZAR – ctd. TYPES Summer School, Bertinoro, August 25, 2007

• Structural types (with a sort of polimorfic inheritance) - abstract vs. concrete part of MML

definition

let F be 1-sorted;

struct(LoopStr) VectSpStr over F

(#

carrier -> set,

add -> BinOp of the carrier,

ZeroF -> Element of the carrier,

lmult -> Function of

[:the carrier of F,the carrier:],the carrier

#);

end;

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –19-a–

Other advanced language constructs TYPES Summer School, Bertinoro, August 25, 2007

• Schemes

• Redefinitions

• Synonyms/antonyms

• “properties”

– E.g. commutativity, reflexivity, etc.

• ’‘requirements”

– E.g. the built-in arithmetic on complex numbers

• Iterative equalities

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –20–

Running the system TYPES Summer School, Bertinoro, August 25, 2007

• Logical modules (passes) of the MIZAR verifier

– parser (tokenizer + identification of so-called “long terms”)

– analyzer (+ reasoner)

– checker (preparator, prechecker, equalizer, unifier) + schematizer

• Communication with the database

– accommodator

– exporter + transferer

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –21–

Running the system TYPES Summer School, Bertinoro, August 25, 2007

• Logical modules (passes) of the MIZAR verifier

– parser (tokenizer + identification of so-called “long terms”)

– analyzer (+ reasoner)

– checker (preparator, prechecker, equalizer, unifier) + schematizer

• Communication with the database

– accommodator

– exporter + transferer

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –21-a–

Running the system TYPES Summer School, Bertinoro, August 25, 2007

• Logical modules (passes) of the MIZAR verifier

– parser (tokenizer + identification of so-called “long terms”)

– analyzer (+ reasoner)

– checker (preparator, prechecker, equalizer, unifier) + schematizer

• Communication with the database

– accommodator

– exporter + transferer

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –21-b–

Running the system TYPES Summer School, Bertinoro, August 25, 2007

• Logical modules (passes) of the MIZAR verifier

– parser (tokenizer + identification of so-called “long terms”)

– analyzer (+ reasoner)

– checker (preparator, prechecker, equalizer, unifier) + schematizer

• Communication with the database

– accommodator

– exporter + transferer

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –21-c–

Running the system TYPES Summer School, Bertinoro, August 25, 2007

• Logical modules (passes) of the MIZAR verifier

– parser (tokenizer + identification of so-called “long terms”)

– analyzer (+ reasoner)

– checker (preparator, prechecker, equalizer, unifier) + schematizer

• Communication with the database

– accommodator

– exporter + transferer

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –21-d–

Running the system TYPES Summer School, Bertinoro, August 25, 2007

• Logical modules (passes) of the MIZAR verifier

– parser (tokenizer + identification of so-called “long terms”)

– analyzer (+ reasoner)

– checker (preparator, prechecker, equalizer, unifier) + schematizer

• Communication with the database

– accommodator

– exporter + transferer

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –21-e–

Running the system – ctd. TYPES Summer School, Bertinoro, August 25, 2007

• The interface (CLI, Emacs Mizar Mode by Josef Urban, “remote processing”)

– The way MIZAR reports errors resembles a compiler’s errors and warnings

– Top-down approach

– Stepwise refinement

– It’s possible to check correctness of incomplete texts

– One can postpone a proof or its more complicated part

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –22–

Enhancing MIZAR texts TYPES Summer School, Bertinoro, August 25, 2007

• Utilities detecting irrelevant parts of proofs

– relprem

– relinfer

– reliters

– trivdemo

– ...

• Checking new versions of system implementation

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –23–

Importing notions from the library TYPES Summer School, Bertinoro, August 25, 2007

• The structure of MIZAR input files

environ

.....

begin
.....

• Library directives
– vocabularies (using symbols)

– constructors (using introduced objects)

– notations (using notations of objects)

– theorems (referencing theorems)

– schemes (referencing schemes)

– definitions (automated unfolding of definitions)

– registrations (automated processing of adjectives)

– requirements (using built-in enhancements for certain constructors, e.g. complex numbers)

• Using a local database

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –24–

Exercises TYPES Summer School, Bertinoro, August 25, 2007

• Based on courses for our students at the University of Bialystok

• Download from ftp://mizar.uwb.edu.pl/pub/types_summer_

school_2007/exercises.zip

– PROPOSIT (propositional and first-order calculus)

– ENUMSET (boolean operations on sets)

– RELATION (basic operations on relations)

– INDUCT (the induction scheme)

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –25–

MIZAR-aided courses at UwB TYPES Summer School, Bertinoro, August 25, 2007

• initially, mathematics department (since 1970s)

• mainly voluntary monographic courses: “Lattice theory”, “Category theory”, “Topology”,

etc.

• new CS department emerged - new curriculum created

• undergraduate level courses:

– “Introduction to logic and set theory”

– “Applied logic”

• graduate level courses:

– “Software verification”

– “Proof verification”

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –26–

“Introduction to Logic and Set Theory” TYPES Summer School, Bertinoro, August 25, 2007

• logical formulae and basic structures of conditional proofs

• Boolean properties of sets

• families of sets and their properties

• binary relations (composition, the inverse relation, selected properties - e.g. reflexivity,

transitivity, etc.)

• functions (domain and codomain, image, etc.)

• equivalence relations, partitions and ordering relations

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –27–

“Applied Logic” TYPES Summer School, Bertinoro, August 25, 2007

• Peano arithmetic

• various forms of the induction principle

• higher-order reasoning with MIZAR schemes

• the axiomatics of set theory

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –28–

“Software verification” TYPES Summer School, Bertinoro, August 25, 2007

• various semantics of software description (operational, denotational, axiomatic)

• program correctness criteria

• mathematical models of computers

• practical verification of exemplary algorithms

• generating proof conditions

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –29–

“Proof verification” TYPES Summer School, Bertinoro, August 25, 2007

• a bit of formal theory of mathematical proofs

• managing databases of formalized proofs

• practical usage of discussed MIZAR mechanisms

• the objective: to enable carrying out formalization in a specific domain

• the formalization may form a basis of one’s MSc thesis

• students are supposed to be trained enough to produce new contributions to MML

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –30–

“Teaching/studying methodology” TYPES Summer School, Bertinoro, August 25, 2007

• gradual introduction of MIZAR constructs

• proof sketches first

• “active” and “passive” language acquisition (e.g. definitions)

• postponing the use of more high-level features - to enable reflection later on

– “syntactic sugar” expressions (then, hence, thesis)

– automatic definition expansion

– implicit general quantifiers

– the use of semantic correlates for thesis elimination

– forward/backward proof distinction

• dedicated (incremented) environments for undergraduate courses

• interacting with the full system for graduate courses

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –31–

Exemplary students’ tasks TYPES Summer School, Bertinoro, August 25, 2007

Reserve R,S,T for Relation;

R is transitive implies R*R c= R
proof

assume a: R is transitive;

let a,b;
assume [a,b] in R*R; then

consider c such that
c: [a,c] in R & [c,b] in R

by RELATION:def 7;
thus [a,b] in R by c,a,RELATION:def 12;

end;

ex R,S,T st not R*(S \ T) c= (R*S) \ (R*T)
proof

reconsider R={[1,2],[1,3]} as Relation
by RELATION:2;

reconsider S={[2,1]} as Relation

by RELATION:1;
reconsider T={[3,1]} as Relation

by RELATION:1;
take R,S,T;

b: [1,2] in R by ENUMSET:def 4;
d: [2,1] in S by ENUMSET:def 3;

[2,1] <> [3,1] by ENUMSET:2; then
not [2,1] in T by ENUMSET:def 3; then

[2,1] in S \ T by d,RELATION:def 6; then
a: [1,1] in R*(S \ T) by b,RELATION:def 7;

e: [1,3] in R by ENUMSET:def 4;

[3,1] in T by ENUMSET:def 3; then
[1,1] in R*T by e,RELATION:def 7; then

not [1,1] in (R*S) \ (R*T) by RELATION:def 6;
hence not R*(S \ T) c= (R*S) \ (R*T)

by RELATION:def 9,a;
end;

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –32–

Exemplary students’ tasks TYPES Summer School, Bertinoro, August 25, 2007

Reserve R,S,T for Relation;

R is transitive implies R*R c= R
proof

assume a: R is transitive;

let a,b;
assume [a,b] in R*R; then

consider c such that
c: [a,c] in R & [c,b] in R

by RELATION:def 7;
thus [a,b] in R by c,a,RELATION:def 12;

end;

ex R,S,T st not R*(S \ T) c= (R*S) \ (R*T)
proof

reconsider R={[1,2],[1,3]} as Relation
by RELATION:2;

reconsider S={[2,1]} as Relation

by RELATION:1;
reconsider T={[3,1]} as Relation

by RELATION:1;
take R,S,T;

b: [1,2] in R by ENUMSET:def 4;
d: [2,1] in S by ENUMSET:def 3;

[2,1] <> [3,1] by ENUMSET:2; then
not [2,1] in T by ENUMSET:def 3; then

[2,1] in S \ T by d,RELATION:def 6; then
a: [1,1] in R*(S \ T) by b,RELATION:def 7;

e: [1,3] in R by ENUMSET:def 4;

[3,1] in T by ENUMSET:def 3; then
[1,1] in R*T by e,RELATION:def 7; then

not [1,1] in (R*S) \ (R*T) by RELATION:def 6;
hence not R*(S \ T) c= (R*S) \ (R*T)

by RELATION:def 9,a;
end;

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –32-a–

Exemplary students’ tasks TYPES Summer School, Bertinoro, August 25, 2007

Reserve R,S,T for Relation;

R is transitive implies R*R c= R
proof

assume a: R is transitive;

let a,b;
assume [a,b] in R*R; then

consider c such that
c: [a,c] in R & [c,b] in R

by RELATION:def 7;
thus [a,b] in R by c,a,RELATION:def 12;

end;

ex R,S,T st not R*(S \ T) c= (R*S) \ (R*T)
proof

reconsider R={[1,2],[1,3]} as Relation
by RELATION:2;

reconsider S={[2,1]} as Relation

by RELATION:1;
reconsider T={[3,1]} as Relation

by RELATION:1;
take R,S,T;

b: [1,2] in R by ENUMSET:def 4;
d: [2,1] in S by ENUMSET:def 3;

[2,1] <> [3,1] by ENUMSET:2; then
not [2,1] in T by ENUMSET:def 3; then

[2,1] in S \ T by d,RELATION:def 6; then
a: [1,1] in R*(S \ T) by b,RELATION:def 7;

e: [1,3] in R by ENUMSET:def 4;

[3,1] in T by ENUMSET:def 3; then
[1,1] in R*T by e,RELATION:def 7; then

not [1,1] in (R*S) \ (R*T) by RELATION:def 6;
hence not R*(S \ T) c= (R*S) \ (R*T)

by RELATION:def 9,a;
end;

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –32-b–

Exemplary students’ tasks TYPES Summer School, Bertinoro, August 25, 2007

reserve i,j,k,l,m,n for natural number;

i+k = j+k implies i=j;
proof
defpred P[natural number] means

i+$1 = j+$1 implies i=j;
A1: P[0]
proof
assume B0: i+0 = j+0;
B1: i+0 = i by INDUCT:3;
B2: j+0 = j by INDUCT:3;
hence thesis by B0,B1,B2;

end;
A2: for k st P[k] holds P[succ k]
proof

let l such that C1: P[l];
assume C2: i+succ l=j+succ l;
then C3: succ(i+l) = j+succ l by C2,INDUCT:4
.= succ(j+l) by INDUCT:4;
hence thesis by C1,INDUCT:2;

end;
for k holds P[k] from INDUCT:sch 1(A1,A2);
hence thesis;

end;

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –33–

Miscelanea TYPES Summer School, Bertinoro, August 25, 2007

• Formalized Mathematics - FM (http://mizar.org/fm)

• XML-ized presentation of MIZAR articles (http://merak.pb.bialystok.pl)

• MMLQuery - search engine for MML (http://mmlquery.mizar.org)

• MIZAR TWiki (http://wiki.mizar.org)

• MIZAR mode for GNU Emacs

(http:

//wiki.mizar.org/cgi-bin/twiki/view/Mizar/MizarMode)

• MoMM - interreduction and retrieval of matching theorems from MML

(http://wiki.mizar.org/cgi-bin/twiki/view/Mizar/MoMM)

• MIZAR Proof Advisor (http://wiki.mizar.org/cgi-bin/twiki/view/

Mizar/MizarProofAdvisor)

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –34–

Recommended reading TYPES Summer School, Bertinoro, August 25, 2007

• P. Rudnicki, To type or not to type, QED Workshop II, Warsaw 1995. (ftp://ftp.

mcs.anl.gov/pub/qed/workshop95/by-person/10piotr.ps)

• A. Trybulec, Checker (a collection of e-mails compiled by F. Wiedijk).

(http://www.cs.ru.nl/˜freek/mizar/by.ps.gz)

• M. Wenzel and F. Wiedijk, A comparison of the mathematical proof languages Mizar and

Isar. (http://www4.in.tum.de/˜wenzelm/papers/romantic.pdf)

• F. Wiedijk, Mizar: An Impression.

(http://www.cs.ru.nl/˜freek/mizar/mizarintro.ps.gz)

• F. Wiedijk, Writing a Mizar article in nine easy steps.

(http://www.cs.ru.nl/˜freek/mizar/mizman.ps.gz)

• F. Wiedijk (ed.), The Seventeen Provers of the World. LNAI 3600, Springer Verlag 2006.

(http://www.cs.ru.nl/˜freek/comparison/comparison.pdf)

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –35–

