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What is MIZAR ? TYPES Summer School, Bertinoro, August 25, 2007

• The MIZAR project started around 1973 as an attempt to reconstruct mathematical

vernacular in a computer-oriented environment

– A formal language for writing mathematical proofs

– A computer system for verifying correctness of proofs

– The library of formalized mathematics – MIZAR Mathematical Library (MML)

• For more information see http://mizar.org

– The language’s grammar

– The bibliography of the MIZAR project

– Free download of binaries for several platforms

– Discussion forum(s)

– MIZAR User Service - e-mail contact point
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The MIZAR language TYPES Summer School, Bertinoro, August 25, 2007

• The proof language is designed to be as close as possible to “mathematical vernacular”

– It is a reconstruction of the language of mathematics

– It forms “a subset” of standard English used in mathematical texts

– It is based on a declarative style of natural deduction

– There are 27 special symbols, 110 reserved words

– The language is highly structured - to ensure producing rigorous and semantically

unambiguous texts

– It allows prefix, postfix, infix notations for predicates as well as parenthetical notations

for functors

• Similar ideas:

– MV (Mathematical Vernacular - N. G. de Bruijn)

– CML (Common Mathematical Language)

– QED Project (http://www-unix.mcs.anl.gov/qed/) - The QED Manifesto from 1994
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Key features of the MIZAR system TYPES Summer School, Bertinoro, August 25, 2007

• The system uses classical first-order logic

• Statements with free second-order variables (e.g. the induction scheme) are supported

• The system used natural deduction for doing conditional proofs

– S. Jaśkowski, On the rules of supposition formal logic. Studia Logica, 1, 1934.

– F. B. Fitch, Symbolic Logic. An Introduction. The Ronald Press Company, 1952.

– K. Ono, On a practical way of describing formal deductions. Nagoya Mathematical

Journal, 21, 1962.

• The system uses a declarative style of writing proofs (mostly forward reasoning) -

resembling mathematical practice

• A system of semantic correlates is used for processing formulas (as introduced by R.

Suszko in his investigations of non-Fregean logic)

• The system as such is independent of the axioms of set theory
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Related systems TYPES Summer School, Bertinoro, August 25, 2007

Systems influenced by MIZAR comprise:

• Mizar mode for HOL (J. Harrison)

• Declare (D. Syme)

• Mizar-light for HOL-light (F. Wiedijk)

• Isar (M. Wenzel)

• MMode/DPL - declarative proof language for Coq (P. Corbineau)

• ...
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MIZAR Mathematical Library MML TYPES Summer School, Bertinoro, August 25, 2007

“A good system without a library is useless. A good library for a bad system is still very

interesting... So the library is what counts.” (F. Wiedijk, Estimating the Cost of a Standard

Library for a Mathematical Proof Checker.)

• A systematic collection of articles started around 1989

• Current MML version - 4.84.971

– includes 971 articles written by 180 authors

– 42150 theorems

– 7926 definitions

– 724 schemes

– 6856 registrations

• The library is based on the axioms of Tarski-Grothendieck set theory
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Basic kinds of MIZAR formulas TYPES Summer School, Bertinoro, August 25, 2007

⊥ contradiction

¬α not α

α ∧ β α & β

α ∨ β α or β

α→ β α implies β

α↔ β α iff β

∀xα(x) for x holds α(x)

∃xα(x) ex x st α(x)
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MIZAR’s main logical module - the CHECKER TYPES Summer School, Bertinoro, August 25, 2007

• There is no set of inference rules - M. Davis’s concept of “obviousness w.r.t an algorithm”

• The de Bruijn criterion of a small checker is not preserved

• The deductive power is still being strengthened (CAS and DS integration)

– new computation mechanisms added

– more automation in the equality calculus

– experiments with more than one general statement in an inference (“Scordev’s device”)
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MIZAR as a disprover TYPES Summer School, Bertinoro, August 25, 2007

An inference of the form
α1, . . . , αk

β

is transformed to
α1, . . . , αk,¬β

⊥
A disjunctive normal form (DNF) of the premises is then created and the system tries to refute

it
([¬]α1,1 ∧ . . . ∧ [¬]α1,k1) ∨ . . . ∨ ([¬]αn,1 ∧ . . . ∧ [¬]αn,kn)

⊥
where αi,j are atomic or universal sentences (negated or not) - for the inference to be

accepted, all disjuncts must be refuted. So in fact n inferences are checked

[¬]α1,1 ∧ . . . ∧ [¬]α1,k1

⊥
...

[¬]αn,1 ∧ . . . ∧ [¬]αn,kn

⊥
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The system of MIZAR’s semantic correlates TYPES Summer School, Bertinoro, August 25, 2007

Internally, all MIZAR formulas are expressed in a simplified “canonical” form - their semantic

correlates using only VERUM, not, & and for _ holds _ together with atomic formulas.

• VERUM is the neutral element of the conjunction

• Double negation rule is used

• de Morgan’s laws are used for disjunction and existential quantifiers

• α implies β is changed into not(α & not β)

• α iff β is changed into α implies β & β implies α, i.e. not(α & not β) &

not(β & not α)

• conjunction is associative but not commutative
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Basic proof strategies TYPES Summer School, Bertinoro, August 25, 2007

• Propositional calculus

– Deduction rule

A implies B :: thesis = A implies B

proof

assume A; :: thesis = B

...

thus B; :: thesis = {}

end;

– Adjunction rule

A & B :: thesis = A & B

proof

...

thus A; :: thesis = B

...

thus B; :: thesis = {}

end;

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –12–
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Basic proof strategies – ctd. TYPES Summer School, Bertinoro, August 25, 2007

• Quantifier calculus

– Generalization rule

for x holds A(x) :: thesis = for x holds A(x)

proof

let a; :: thesis = A(a)

...

thus A(a); :: thesis = {}

end;

– Exemplification rule

ex x st A(x) :: thesis = ex x st A(x)

proof

take a; :: thesis = A(a)

...

thus A(a); :: thesis = {}

end;
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More proof strategies TYPES Summer School, Bertinoro, August 25, 2007

A :: thesis = A

proof

assume not A; :: thesis = contradiction

...

thus contradiction; :: thesis = {}

end;

... :: thesis = ...

proof

assume not thesis; :: thesis = contradiction

...

thus contradiction; :: thesis = {}

end;
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More proof strategies – ctd. TYPES Summer School, Bertinoro, August 25, 2007

... :: thesis = ...

proof

assume not thesis; :: thesis = contradiction

...

thus thesis; :: thesis = {}

end;

A & B implies C :: thesis = A & B implies C

proof

assume A; :: thesis = B implies C

...

assume B; :: thesis = C

...

thus C; :: thesis = {}

end;
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More proof strategies – ctd. TYPES Summer School, Bertinoro, August 25, 2007

A implies (B implies C):: thesis = A implies (B implies C)

proof

assume A; :: thesis = B implies C

...

assume B; :: thesis = C

...

thus C; :: thesis = {}

end;

A or B or C or D :: thesis = A or B or C or D

proof

assume not A :: thesis = B or C or D

...

assume not B; :: thesis = C or D

...

thus C or D; :: thesis = {}

end;
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Types in MIZAR TYPES Summer School, Bertinoro, August 25, 2007

• A hierarchy based on the “widening” relation with set being the widest type

Function of X,Y� PartFunc of X,Y� Relation of X,Y�
Subset of [:X,Y:]� Element of bool [:X,Y:]� set

• MIZAR types are refined using adjectives (“key linguistic entities used to represent

mathematical concepts” according to N.G. de Bruijn)

one-to-one Function of X,Y

finite non empty proper Subset of X

• adjectives are processed to enable automatic deriving of type information (so called

“registrations”)

• Types also play a syntactic role - e.g. enable overloading of notations

• The type of a variable can be “reserved” and then not used explicitely

• MIZAR types are required to have a non-empty denotation (existence must be proved

when defining a type)
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Types in MIZAR – ctd. TYPES Summer School, Bertinoro, August 25, 2007

• Dependent types

definition

let C be Category

a,b,c be Object of C,

f be Morphism of a,b,

g be Morphism of b,c;

assume Hom(a,b)<>{} & Hom(b,c)<>{};

func g*f -> Morphism of a,c equals

:: CAT_1:def 13

g*f;

...correctness...

end;

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –18–
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Types in MIZAR – ctd. TYPES Summer School, Bertinoro, August 25, 2007

• Structural types (with a sort of polimorfic inheritance) - abstract vs. concrete part of MML

definition

let F be 1-sorted;

struct(LoopStr) VectSpStr over F

(#

carrier -> set,

add -> BinOp of the carrier,

ZeroF -> Element of the carrier,

lmult -> Function of

[:the carrier of F,the carrier:],the carrier

#);

end;

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –19–
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Other advanced language constructs TYPES Summer School, Bertinoro, August 25, 2007

• Schemes

• Redefinitions

• Synonyms/antonyms

• “properties”

– E.g. commutativity, reflexivity, etc.

• ’‘requirements”

– E.g. the built-in arithmetic on complex numbers

• Iterative equalities
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Running the system TYPES Summer School, Bertinoro, August 25, 2007

• Logical modules (passes) of the MIZAR verifier

– parser (tokenizer + identification of so-called “long terms”)

– analyzer (+ reasoner)

– checker (preparator, prechecker, equalizer, unifier) + schematizer

• Communication with the database

– accommodator

– exporter + transferer
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Running the system – ctd. TYPES Summer School, Bertinoro, August 25, 2007

• The interface (CLI, Emacs Mizar Mode by Josef Urban, “remote processing”)

– The way MIZAR reports errors resembles a compiler’s errors and warnings

– Top-down approach

– Stepwise refinement

– It’s possible to check correctness of incomplete texts

– One can postpone a proof or its more complicated part
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Enhancing MIZAR texts TYPES Summer School, Bertinoro, August 25, 2007

• Utilities detecting irrelevant parts of proofs

– relprem

– relinfer

– reliters

– trivdemo

– ...

• Checking new versions of system implementation
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Importing notions from the library TYPES Summer School, Bertinoro, August 25, 2007

• The structure of MIZAR input files

environ

.....

begin
.....

• Library directives
– vocabularies (using symbols)

– constructors (using introduced objects)

– notations (using notations of objects)

– theorems (referencing theorems)

– schemes (referencing schemes)

– definitions (automated unfolding of definitions)

– registrations (automated processing of adjectives)

– requirements (using built-in enhancements for certain constructors, e.g. complex numbers)

• Using a local database
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Exercises TYPES Summer School, Bertinoro, August 25, 2007

• Based on courses for our students at the University of Bialystok

• Download from ftp://mizar.uwb.edu.pl/pub/types_summer_

school_2007/exercises.zip

– PROPOSIT (propositional and first-order calculus)

– ENUMSET (boolean operations on sets)

– RELATION (basic operations on relations)

– INDUCT (the induction scheme)
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MIZAR-aided courses at UwB TYPES Summer School, Bertinoro, August 25, 2007

• initially, mathematics department (since 1970s)

• mainly voluntary monographic courses: “Lattice theory”, “Category theory”, “Topology”,

etc.

• new CS department emerged - new curriculum created

• undergraduate level courses:

– “Introduction to logic and set theory”

– “Applied logic”

• graduate level courses:

– “Software verification”

– “Proof verification”
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“Introduction to Logic and Set Theory” TYPES Summer School, Bertinoro, August 25, 2007

• logical formulae and basic structures of conditional proofs

• Boolean properties of sets

• families of sets and their properties

• binary relations (composition, the inverse relation, selected properties - e.g. reflexivity,

transitivity, etc.)

• functions (domain and codomain, image, etc.)

• equivalence relations, partitions and ordering relations
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“Applied Logic” TYPES Summer School, Bertinoro, August 25, 2007

• Peano arithmetic

• various forms of the induction principle

• higher-order reasoning with MIZAR schemes

• the axiomatics of set theory
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“Software verification” TYPES Summer School, Bertinoro, August 25, 2007

• various semantics of software description (operational, denotational, axiomatic)

• program correctness criteria

• mathematical models of computers

• practical verification of exemplary algorithms

• generating proof conditions
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“Proof verification” TYPES Summer School, Bertinoro, August 25, 2007

• a bit of formal theory of mathematical proofs

• managing databases of formalized proofs

• practical usage of discussed MIZAR mechanisms

• the objective: to enable carrying out formalization in a specific domain

• the formalization may form a basis of one’s MSc thesis

• students are supposed to be trained enough to produce new contributions to MML
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“Teaching/studying methodology” TYPES Summer School, Bertinoro, August 25, 2007

• gradual introduction of MIZAR constructs

• proof sketches first

• “active” and “passive” language acquisition (e.g. definitions)

• postponing the use of more high-level features - to enable reflection later on

– “syntactic sugar” expressions (then, hence, thesis)

– automatic definition expansion

– implicit general quantifiers

– the use of semantic correlates for thesis elimination

– forward/backward proof distinction

• dedicated (incremented) environments for undergraduate courses

• interacting with the full system for graduate courses
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Exemplary students’ tasks TYPES Summer School, Bertinoro, August 25, 2007

Reserve R,S,T for Relation;

R is transitive implies R*R c= R
proof

assume a: R is transitive;

let a,b;
assume [a,b] in R*R; then

consider c such that
c: [a,c] in R & [c,b] in R

by RELATION:def 7;
thus [a,b] in R by c,a,RELATION:def 12;

end;

ex R,S,T st not R*(S \ T) c= (R*S) \ (R*T)
proof

reconsider R={[1,2],[1,3]} as Relation
by RELATION:2;

reconsider S={[2,1]} as Relation

by RELATION:1;
reconsider T={[3,1]} as Relation

by RELATION:1;
take R,S,T;

b: [1,2] in R by ENUMSET:def 4;
d: [2,1] in S by ENUMSET:def 3;

[2,1] <> [3,1] by ENUMSET:2; then
not [2,1] in T by ENUMSET:def 3; then

[2,1] in S \ T by d,RELATION:def 6; then
a: [1,1] in R*(S \ T) by b,RELATION:def 7;

e: [1,3] in R by ENUMSET:def 4;

[3,1] in T by ENUMSET:def 3; then
[1,1] in R*T by e,RELATION:def 7; then

not [1,1] in (R*S) \ (R*T) by RELATION:def 6;
hence not R*(S \ T) c= (R*S) \ (R*T)

by RELATION:def 9,a;
end;

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –32–



Exemplary students’ tasks TYPES Summer School, Bertinoro, August 25, 2007

Reserve R,S,T for Relation;

R is transitive implies R*R c= R
proof

assume a: R is transitive;

let a,b;
assume [a,b] in R*R; then

consider c such that
c: [a,c] in R & [c,b] in R

by RELATION:def 7;
thus [a,b] in R by c,a,RELATION:def 12;

end;

ex R,S,T st not R*(S \ T) c= (R*S) \ (R*T)
proof

reconsider R={[1,2],[1,3]} as Relation
by RELATION:2;

reconsider S={[2,1]} as Relation

by RELATION:1;
reconsider T={[3,1]} as Relation

by RELATION:1;
take R,S,T;

b: [1,2] in R by ENUMSET:def 4;
d: [2,1] in S by ENUMSET:def 3;

[2,1] <> [3,1] by ENUMSET:2; then
not [2,1] in T by ENUMSET:def 3; then

[2,1] in S \ T by d,RELATION:def 6; then
a: [1,1] in R*(S \ T) by b,RELATION:def 7;

e: [1,3] in R by ENUMSET:def 4;

[3,1] in T by ENUMSET:def 3; then
[1,1] in R*T by e,RELATION:def 7; then

not [1,1] in (R*S) \ (R*T) by RELATION:def 6;
hence not R*(S \ T) c= (R*S) \ (R*T)

by RELATION:def 9,a;
end;

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –32-a–



Exemplary students’ tasks TYPES Summer School, Bertinoro, August 25, 2007

Reserve R,S,T for Relation;

R is transitive implies R*R c= R
proof

assume a: R is transitive;

let a,b;
assume [a,b] in R*R; then

consider c such that
c: [a,c] in R & [c,b] in R

by RELATION:def 7;
thus [a,b] in R by c,a,RELATION:def 12;

end;

ex R,S,T st not R*(S \ T) c= (R*S) \ (R*T)
proof

reconsider R={[1,2],[1,3]} as Relation
by RELATION:2;

reconsider S={[2,1]} as Relation

by RELATION:1;
reconsider T={[3,1]} as Relation

by RELATION:1;
take R,S,T;

b: [1,2] in R by ENUMSET:def 4;
d: [2,1] in S by ENUMSET:def 3;

[2,1] <> [3,1] by ENUMSET:2; then
not [2,1] in T by ENUMSET:def 3; then

[2,1] in S \ T by d,RELATION:def 6; then
a: [1,1] in R*(S \ T) by b,RELATION:def 7;

e: [1,3] in R by ENUMSET:def 4;

[3,1] in T by ENUMSET:def 3; then
[1,1] in R*T by e,RELATION:def 7; then

not [1,1] in (R*S) \ (R*T) by RELATION:def 6;
hence not R*(S \ T) c= (R*S) \ (R*T)

by RELATION:def 9,a;
end;

Adam Naumowicz, Institute of Comp. Sci., University of Bialystok –32-b–



Exemplary students’ tasks TYPES Summer School, Bertinoro, August 25, 2007

reserve i,j,k,l,m,n for natural number;

i+k = j+k implies i=j;
proof
defpred P[natural number] means

i+$1 = j+$1 implies i=j;
A1: P[0]
proof
assume B0: i+0 = j+0;
B1: i+0 = i by INDUCT:3;
B2: j+0 = j by INDUCT:3;
hence thesis by B0,B1,B2;

end;
A2: for k st P[k] holds P[succ k]
proof

let l such that C1: P[l];
assume C2: i+succ l=j+succ l;
then C3: succ(i+l) = j+succ l by C2,INDUCT:4
.= succ(j+l) by INDUCT:4;
hence thesis by C1,INDUCT:2;

end;
for k holds P[k] from INDUCT:sch 1(A1,A2);
hence thesis;

end;
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Miscelanea TYPES Summer School, Bertinoro, August 25, 2007

• Formalized Mathematics - FM (http://mizar.org/fm)

• XML-ized presentation of MIZAR articles (http://merak.pb.bialystok.pl)

• MMLQuery - search engine for MML (http://mmlquery.mizar.org)

• MIZAR TWiki (http://wiki.mizar.org)

• MIZAR mode for GNU Emacs

(http:

//wiki.mizar.org/cgi-bin/twiki/view/Mizar/MizarMode)

• MoMM - interreduction and retrieval of matching theorems from MML

(http://wiki.mizar.org/cgi-bin/twiki/view/Mizar/MoMM)

• MIZAR Proof Advisor (http://wiki.mizar.org/cgi-bin/twiki/view/

Mizar/MizarProofAdvisor)
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Recommended reading TYPES Summer School, Bertinoro, August 25, 2007

• P. Rudnicki, To type or not to type, QED Workshop II, Warsaw 1995. (ftp://ftp.

mcs.anl.gov/pub/qed/workshop95/by-person/10piotr.ps)

• A. Trybulec, Checker (a collection of e-mails compiled by F. Wiedijk).

(http://www.cs.ru.nl/˜freek/mizar/by.ps.gz)

• M. Wenzel and F. Wiedijk, A comparison of the mathematical proof languages Mizar and

Isar. (http://www4.in.tum.de/˜wenzelm/papers/romantic.pdf)

• F. Wiedijk, Mizar: An Impression.

(http://www.cs.ru.nl/˜freek/mizar/mizarintro.ps.gz)

• F. Wiedijk, Writing a Mizar article in nine easy steps.

(http://www.cs.ru.nl/˜freek/mizar/mizman.ps.gz)

• F. Wiedijk (ed.), The Seventeen Provers of the World. LNAI 3600, Springer Verlag 2006.

(http://www.cs.ru.nl/˜freek/comparison/comparison.pdf)
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