Introduction to Type Theory
August 2007
Types Summer School
Bertinoro, It

Herman Geuvers
Nijmegen NL

Lecture 4: Higher Order Logic, A-cube, Pure Type Systems

The original motivation of Church to introduce simple type theory was:
to define higher order (predicate) logic
In A— he adds the following
e prop as a basic type
® D : prop—prop—prop
e Y, : (c—prop)—prop (for each type o)

This defines the language of higher order logic.

e Induction
VN—prop(AP:N—prop.(P0)
D (Vy(Ax:N.(Px D P(Sx)))
D Vn(Az:N.Px)))

Notation: VP:N—prop((PO0)
D (Vo:N.(Px D P(S)))
D Va:N.Px)

e Higher order predicates/functions: transitive closure of a relation R

AR : A—A—prop. A,y : A.
(VQ : A—A—prop. (trans(Q) D (RC Q) D Qxy))

of type
(A—A—prop)—(A—A—prop)

Derivation rules for Higher Order Logic (following Church)
e Natural deduction style.
e Rules are ‘on top’ of the simple type theory.

e Judgements are of the form

Al_f‘gp

— A=, Y

— I'i1s a A—-context

— '@ :prop, I' =y : prop,..., I' =, : prop
— I is usually left implicit: A F ¢

(axiom) AlF g if pe€ A

AUpE
Al oDy

(D -introduction)

AFp>Y Ak

(D -elimination)

A
Al
(V-introduction) if x:0 ¢ FV(A)
AFVrio.p
AFVz.o.0
(V-elimination) ift:o
At olt/z]
Al
(conversion) — if o =51

AF

Church has additional things that we will not consider now:
e Negation connective with rules

e Classical logic
A+ Y2

Al

e Define other connectives in terms of D, V, = (classically).

e Choice operator 1, : (c—prop)—o

e Rule for ¢:
AFAlzo.Px

AF P(i,P)

Church’ original higher order logic is basically the logic of the theorem
prover HOL (Gordon, Melham, Harrison) and of Isabelle-HOL (Paulson,
Nipkow).

We will here restrict to the basic constructive core (V, D) of HOL.

The need for a conversion rule:
AFYP:N—prop.(...Pc...)
AF(...(A\y:N.y > 0)c...)
AF(...c>0...)

V-elim

conv

Definability of other connectives (constructively):

1 = Va:prop.a
N = Va:prop.(p DY D a) D«
eV = Vaprop.(p Da)D (Y Da) D«
dr:o.p = Va:prop.(Vr:o.0 D a) D«

|dea:

The definition of a connective is an encoding of the elimination rule.

Existential quantifier

dz:0.¢ := Ya:prop.(Vx:0.0 D a) D «
Derivation of the elimination rule in HOL.
]
] .
Jx:o.p C
x & FV(C, ass.) (Vx:op D C) D C Vrxiop D C
C

dr:o.po O
C

Existential quantifier

dz:0.¢ ;= VYa:prop.(Vx:0.0 D a) D «

Derivation of the introduction rule in HOL.

Vx:o.p D al
ot/ plt/z] elt/z] Do
Jx:o.p .

(Vxio.0 D) D«

Jx:o.p

10

Equality is definable in higher order logic:

t and q terms are equal if they share the same properties
(Leibniz equality)

Definition in HOL (for ¢,q : A):
t=aq := VP:A—prop.(Pt D Pq)
e This equality is reflexive and transitive (easy)

e It is also symmetric(!) Trick: find a “smart” predicate P

Exercise: Prove reflexivity, transitivity and symmetry of = 4.

11

Exercise:
The transitive closure of a binary relation R on A has been defined as
follows.

trclosR = Az, y:A.
(VQ: A— A—Prop.(trans(Q)—(R C Q)—(Qx1))).
1. Prove that the transitive closure is transitive.

2. Prove that the transitive closure of R contains R.

12

(axiom)

(D -introduction)

(D -elimination)

(V-introduction)

(V-elimination)

(conversion)

Al

AUpE
Al oDy

AFp>Y Ak

A F)

Al
AFVrio.p

AFVz.o.0
At plt/a]

Al p

AF

if o€ A

if x:0 ¢ FV(A)

ift:o

if o =g

13

Why not introduce a A-term notation for the derivations?

This gives a type theory AHOL
e No ‘lifting’ of prop to the type level (via T : prop—type).
e Let prop be a new ‘universe’ of propositional types.

e Direct encoding (shallow embedding) of HOL into the type theory
AHOL

14

(axiom)

(D -introduction)

(D -elimination)

(V-introduction)

(V-elimination)

(conversion)

AFxz:o

A,z M)

AFAx:o.M:p D
AFM:pD9Y AFN:p

AF M N
A DM:op

A Ao M :Vx.o.p
A M:Vr.o.p

At Mt:p|t/z]
A DM:op

A M:

if z:p e A

if x:0 ¢ FV(A)

ift:o

if o=

15

Now we have two ‘levels’ of type theories
e The (simple) type theory describing the language of HOL
e The type theory for the proof-terms of HOL

NB Many rules, many similar rules.

We put these levels together into one type theory AHOL.
Pseudoterms:

T ::= Prop | Type | Type’ | Var | (IIVar:T.T) | (A\Var:T.T) | TT
{Prop, Type, Type'} is the set of sorts, S.

Some of the typing rules are parametrized

16

(axiom)

(var)

~ Prop : Type

I'-A:s

I'New:AFx: A

(weak)

~ Type: Type'

I'A:s T'HM:C

I'o:AFM:C

17

- A-: S1 F,ZC:A - B : S92 if (81, 82) c { (Type, Type)a

IT)
(I'-1lx:A.B : s (Prop, Prop), (Type, Prop) }
N I''e:AFM:B T FIIz:A.B:s
' e:AM :1lx:A.B
I'-M:1lz:AB T'HFN:A
(app)

[+ MN : B[N/z]

'EM:A T'HB:s.
(COHV) IfAIﬁB
I'-M:B

18

I'FA:sy Lx:AEB:sy if (s1,52) € { (Type, Type),
[' - 1lz:A.B : s9 (Prop, Prop), (Type, Prop) }

(1)

e The combination (Type, Type) forms the function types A— B for
A, B:Type.
This comprises the unary predicate types and binary relations types:
A—Prop and A—A—Prop.
Also: higher order predicate types like (A— A—Prop)—Prop.
NB A Il-type formed by (Type, Type) is always an —-type.

e (Prop,Prop) forms the propositional types p—1) for ¢, 1:Prop;
implicational formulas.
NB A Il-type formed by (Type, Type) is always an —-type.

e (Type,Prop) forms the dependent propositional type Ilx:A.¢ for
A:Type, :Prop; universally quantified formulas.

19

Example: Deriving irreflexivity from anti-symmetry

Rel = AX:Type.X—X—Prop
AntiSym := AX:Type.AR:(Rel X).Vx,y: X.(Rxy) D (Ryx) D L
Irrefl = AX:Type.AR:(Rel X).Vr:X.(Rxzx) D L

Derivation in HOL:
Vedy*Rxy D Ryxz D L
Vy*Rzy D Ryx D L

Rxx D Rzxx D L R x x]
Rxx D L R x x]
L
Rxx D 1

Ve Raxx DO L

20

Derivation in HOL, with terms:

2 Vey Rey D Ryxz O L

zx:Vy?*Rxy D Ryx D L

zxr:Rxx D Rrxx D L lq: Rz x]

zrxxq: Rrxae D L lq: Rx x|

zrrqq : L

AN:(Rxx).zrxqq: Rrax D L
\e:ANg:(Rxx).zzxqq : Ve .Rxx D L

Typing judgement in AHOL:

A:Type, R:A—A—Prop, z: Iz, y:A(Rxy—Ryx—1)F
A ANg:(Rxx).zxxqq: (A Rxx— 1)

21

Question: is the type theory AHOL really isomorphic with HOL?

Yes: we can disambiguate the syntax. [No details.]

22

Properties of AHOL.

e Uniqueness of types
fI'=M:Aand ' =M : B, then A=3B.

e Subject Reduction
fI'=M:Aand M —g N, thenI' - N : A.

e Strong Normalization
If I' = M : A, then all B-reductions from M terminate.

Proof of SN is a higher order extension of the one for A2 (using the

saturated sets).

23

Decidability Questions:

I'-M:07 TCP
I'M:? TSP
I'E?:0 TIP

For AHOL:
e TIP is undecidable

e TCP/TSP: simultaneously.
The type checking algorithm is close to the one for AP. (In AP we

had a judgement of correct context; this form of judgement could
also be introduced for AHOL)

24

AHOL contains A2 and \—.

I'FA:sy I'x:AEB:sy if (s1,s2) € { (Type, Type),
I'-1lx:A.B : S9 (Prop7 Prop), (Type7 Prop) }

(1)

This rule allows to form
e —-types on the Type-level (one copie of \—)
e —-types on the Prop-level (second copie of A—)

e Ila:Prop.a—a: polymorphic types on the Prop-level (one copie of
A2)

25

- A: S1 F,ZC:A - B : S92 if (81, 82) c { (Type, Type)a

(1)
I'+Ixz:AB : s, (Prop, Prop), (Type, Prop) }

Why not extend AHOL to include

e Higher order logic over polymorphic domains?
like ITA : Type.A—A

e Quantification over all domains?
like in IIA : Type.IlP:A—Prop.Illx:A.Px—Px

This can easily be done by allowing in the II-rule

e (s1,s2) € { (Type', Type) } to obtain higher order logic over
polymorphic domains ~» system AU~

e (s1,82) € { (Type',Prop) } to allow quantification over all domains
~ system AU

26

Problem:

e \U (MHOL + (Type',Type) and (Type',Prop)) is inconsistent
(Girard)

e \U™ (AHOL + (Type', Type)) is inconsistent (Coquand, Hurkens)
NB AHOL + (Type',Prop) is consistent.

Implications
e AU~ can't be used as a logic.
e In A\U™, there is a closed term M with = M : L
e This M can not be in normal form (by some syntactic reasoning)

e So, \U™ is not SN

27

Type Checking in AU~ s still decidable:
All types (terms of type Prop, Type or Type') are strongly normalizing

then if C' =g llz:A.Band A =3 D
then B[N/x]| else ‘false’

else ‘false’,

In the type synthesis algorithm we only check equality of types

28

Variations on the rules of AHOL:

e There are many type system with (slightly) different rules

e Many (proofs of) properties are similar

e Plan: Study these type systems in one general framework:

— The cube of typed A-calculi (Barendregt)
— Pure Type Systems (Terlouw, Berardi)

29

The cube of typed M-calculi: (forget about Type' for the moment)

Vary on all possible combinations for

R C { (Prop, Prop), (Type, Prop), (Type, Type), (Prop, Type) }

in the Il-rule:

I'FA:s1 TI'x:AF B : sy
(11) if (s1,82) € R
I'1Ilx:A.B : s

We take (Prop, Prop) in every R

30

A2

A—

-~ \P

A

~ \Pw

31

add (Type, Prop)

add (Type, Type)

(Prop, Prop)

~ add (Prop, Type)

32

I'FA:s1 TI'xz:AF B : so
(1I) if (s1,82) € R
I'E1lx:A.B : s9

System R

A— (Prop, Prop)

A2 (system F) (Prop, Prop) (Type, Prop)

AP (LF) (Prop, Prop) (Prop, Type)

AW (Prop, Prop) (Type, Type)
AP2 (Prop, Prop) (Type, Prop) (Prop, Type)

Aw (system Fw) | (Prop, Prop) (Type, Prop) (Type, Type)
APw (Prop, Prop) (Prop, Type) (Type, Type)
APw (CC) (Prop, Prop) (Type, Prop) (Prop, Type) (Type, Type)

33

A— In this presentation is equivalent to A— in the way we've presented
before. Similarly for A2, AP, ... This cube also gives a fine structure for
the

Calculus of Constructions, CC (Coquand and Huet)

CC has:

e Polymorphic data types on the Prop-level,

e.g. lla:Prop.a—(a—a)—a.

e Predicate domains on the Type-level,
e.g. N—N—Prop

e Logic on the Prop-level,
e.g. o AN := Ila:Prop.(p—1p—a)—a.

e Universal quantification (first and higher order),
e.g. IIP:N—Prop.llz:N.Px— Pz.

34

One can do higher order predicate logic in CC, in a slightly unusual way:
e ‘propositions’ and first order ‘sets’ are both of type Prop
e propositions and sets are completely mixed

Is it faithful to do higher order predicate logic in CC?7?

Answer: No!
There are non-provable formulas of HOL that become inhabited in CC

35

Consider extensionality of propostions:
EXT := Va, B:prop.(a &) = (@ =prop)

In CC, this becomes Ilc, 3:Prop.(ac <=) — (a =prop)

Suppose two base domains A and B and constants a : A, b: B.
In HOL, the following formulas are consistent.

o v =Vr:Ax=a, Y :=Vr:B.dy:B.x #y
But in CC, EXT also applies to the base sets A and B.
A < B (both are non-empty) so A =p,p B
so property ¢ (of B) also applies to A

so Vr:Ady:Ax #y

contradicting ¢
So, in CC, v and % are inconsistent

36

We have to be careful when doing higher order logic in CC.

Or: we may try to improve on this: taking the sets and the propositions
apart:

System APREDw:

e Sorts: Prop, Set, Type?, Type®
e Axioms for these sorts: Prop : Type?, Set : Type®

e Rules R:
— (Prop, Prop): implication
Set, Prop): first order quantification
Type?, Prop): higher order quantification

= (

= (

— (Set, Set): function types

— (Set, Type®): predicate types
—(

Type?, Type): higher order types

37

Pure Type Systems
Determined by a triple (S, A, R) with

e S the set of sorts
o A the set of axioms, AC S x S

e R thesetof ruless RCS XS XS

If s = s3in (s1,52,53) € R, we write (s1,52) € R.

pseudoterms:

T ::=&|Var|(IIVar:T.T) | (A\Var:T.T) | TT.

38

(sort)

(weak)

(1)

(A)

(app)

(convg)

- £ (51 59) € A (var) 25 gy
S1 .S | S1,S & var IT U
e b INe:AFx: A

I'rA:s T'HM:C
ifx ¢ T

I'Ne:AFEM:C
I'FA:sy TI'x:AF B : so

if (81, S9, 83) ceR
I'-1Ilx:A.B : s3

I'Nec:AF-M:B T FIlx:A.B:s

' e:AM : 1lx:A.B
I'-M:1lz:AB T'THFN:A

' MN : B[N/x]
I'-M:A T'HB:s
I'-M: B

A=4 B

39

Examples of PTSs

CC

S Prop, Type
A Prop : Type
R (Prop, Prop), (Prop, Type), (Type, Prop), (Type, Type)

APREDw

S Set, Type®, Prop, Type

A Set: Type®, Prop : Type

R (Set, Set), (Set, Type), (Type, Type), (Prop, Prop),
(Set, Prop), (Type, Prop)

40

AHOL

S Prop, Type, Type'
A Prop : Type, Type : Type’
R (Prop, Prop), (Type, Type), (Type, Prop)

AU

S

A Prop: Type, Type : Type'

R

Prop, Type, Type’

(Prop, Prop), (Type, Type), (Type’, Type), (Type’, Prop), (Type, Prop)

Ak

>*

A O
>
>*

41

A PTS-morphism from A\(S, A, R) to \(S§", A", R) is an
f: S — &’ that preserves the axioms and rules:

o if (s1,52) € Athen (f(s1), f(s2)) € A
o if (81, S92, 83) € R then (f(Sl), f(SQ), f(83)) c R’

f extends the pseudoterms and contexts:

f ' M : Athen f(I')F f(M): f(A)

42

There are now two type systems for higher order predicate logic:

APREDw and AHOL.

APREDw

S Set, Type®, Prop, Type

A Set : Type®, Prop : Type

R (Set, Set), (Set, Type), (Type, Type), (Prop, Prop),
(Set, Prop), (Type, Prop)

S Prop, Type, Type/
A Prop : Type, Type : Type’
R (Prop, Prop), (Type, Type), (Type, Prop)

They are equivalent:
The PTS-morphism A : APREDw — AHOL, given by

h(Prop) := Prop h(Set) = Type
h(Type”) := Type h(Type’)

Type’

constitutes an isomorphism between the derivable sequents.

43

What is the use of the abstract framework of PTSs?
e Present (the kernel of) systems in a uniform way
e Compare systems (e.g. AHOL, APREDw, CC) within one framework

e Prove properties for all systems at once.

44

Properties of PTSs.

e Uniqueness of types
fI'-M:Aand ' M : B, then A=3B.

Holds if AC S xS and R C (S xS) xS are functions.
Definition A PTS where A and R are functions is called a functional
PTS (or singly sorted PTS).

e Subject Reduction
fI'-M:Aand M —3 N, thenI' = N : A.

e Substitution property
fI'z: BLAFM:A I'-P: B, then
I'AlP/x| - M|P/x] : A|P/x].

45

Properties of PTSs ctd.

e Thinning
fTFM:Aand I' C A, A well-formed, then A+ M : A.

e Strengthening
f T, x: B,AFM:Aand xz ¢ FV(M, A, A), then
I''AEFM:A.

Strong Normalization (SN)
If I' = M : A, then all 3-reductions from M terminate.

SN holds for some PTSs, and for some not.
SN for CC is proved by a higher order extension of the saturated sets
argument (for A\2).

46

Some more examples of PTSs

CC™>

S

A
R

Prop, {Typez}zelN

Prop : Type, Type, : Type,L-Jrl

(Prop, Prop), (Prop, Type;), (Type;, Prop)
(Typez'? Typej7 Typemax(i,j))

Recall that (Type;, Typey, Type,) is inconsistent (AU)
Similarly (Type; . Type;, Type;)) would be inconsistent.

47

The Extended Calculus of Constructions has in addition
e Cumulativity: Prop C Type, C Type; C ..., so

' A: Prop ' A: Type,

' A: Type, I'FA: Type, 4

e) -types:
I'A:Prop I'yz:A+ B : Prop ' A:Type, I'z:AF B : Type,
' Yx:A.B : Prop ' X2 AB : Typeaxi)
For ¢ : Prop

e We have ITA:Type,.¢ : Prop, but

e \We do not have X A:Type,.p : Prop.
Note: The type theory of Coq has in addition Set : Type and rules
(Set, Set), (Type;, Set), (Set, Prop).

48

>.-types

I'-A:Type I''z:A+ B : Prop
I'=>x:A.B : Prop

leads to inconsistency:

e Define () := ¥ A:Set. X R: A— A—Prop.wf(R)
wf(R) denotes that R is well-founded. (No infinite descending
R-chains).

e Define < on (2 by
(A, R) < (B, Q) := R can be embedded into) under some b : B

Then

— < is well-founded on {2

— If (A, R) well-founded, then (A, R) < (2, <)
so contradiction: ... < (©,<) < (2,<) < (22, <).

49

Intensionality versus Extensionality
The equality in the side condition in the conv rule is intensional and

decidable. |t can also be extensional.

Extensional equality amounts to the following rules:
I'-M,N:A—-B TFp:llz:A.(Mxz = Nx)
I'-M=N:A—B
I'-P:A I'FA=B:s
I'-P:B

(ext)

(conv)

e Intensional equality of functions = equality of algorithms
(the way the function is presented to us (syntax))

e Extensional equality of functions = equality of graphs
(the (set-theoretic) meaning of the function (semantics))

50

Adding the rule (ext) renders TCP undecidable:

Suppose H : (A—B)—Prop and x : (H f); then
x:(H g)iffthereisap:llz:A.fr=gx

So, to solve this TCP, we need to solve a TIP.

The interactive theorem prover Nuprl is based on extensional type theory.

51

