Introduction to Type Theory
August 2007
Types Summer School
Bertinoro, It

Herman Geuvers Nijmegen NL

Lecture 4: Higher Order Logic, λ -cube, Pure Type Systems

The original motivation of Church to introduce simple type theory was:

to define higher order (predicate) logic

In λ he adds the following

- prop as a basic type
- \supset : prop \rightarrow prop \rightarrow prop
- $\forall_{\sigma} : (\sigma \rightarrow \mathsf{prop}) \rightarrow \mathsf{prop}$ (for each type σ)

This defines the language of higher order logic.

Induction

$$\forall_{N \to \mathsf{prop}}(\quad \lambda P : N \to \mathsf{prop}.(P0)$$

$$\supset (\forall_N (\lambda x : N . (Px \supset P(S \, x)))$$

$$\supset \forall_N (\lambda x : N . Px)))$$

Notation:
$$\forall P: N \rightarrow \mathsf{prop}((P0)$$

 $\supset (\forall x: N.(Px \supset P(Sx)))$
 $\supset \forall x: N.Px)$

ullet Higher order predicates/functions: transitive closure of a relation R

$$\begin{split} &\lambda R: A {\longrightarrow} A {\longrightarrow} \mathsf{prop.} \ \lambda x, y: A. \\ &(\forall Q: A {\longrightarrow} A {\longrightarrow} \mathsf{prop.} \ (\mathsf{trans}(Q) \supset (R \subseteq Q) \supset Q \, x \, y)) \end{split}$$

of type

$$(A {\longrightarrow} A {\longrightarrow} \mathsf{prop}) {\longrightarrow} (A {\longrightarrow} A {\longrightarrow} \mathsf{prop})$$

Derivation rules for Higher Order Logic (following Church)

- Natural deduction style.
- Rules are 'on top' of the simple type theory.
- Judgements are of the form

$$\Delta \vdash_{\Gamma} \varphi$$

- $-\Delta = \psi_1, \dots, \psi_n$
- Γ is a $\lambda \rightarrow$ -context
- $-\Gamma \vdash \varphi$: prop, $\Gamma \vdash \psi_1$: prop,..., $\Gamma \vdash \psi_n$: prop
- $-\Gamma$ is usually left implicit: $\Delta \vdash \varphi$

$$(\mathsf{axiom}) \qquad \qquad \Delta \vdash \varphi \qquad \qquad \mathsf{if} \ \varphi \in \Delta$$

$$(\supset -introduction) \quad \frac{\Delta \cup \varphi \vdash \psi}{\Delta \vdash \varphi \supset \psi}$$

$$(\supset \text{-elimination}) \qquad \frac{\Delta \vdash \varphi \supset \psi \quad \Delta \vdash \varphi}{\Delta \vdash \psi}$$

$$(\forall \text{-introduction}) \quad \frac{\Delta \vdash \varphi}{\Delta \vdash \forall x : \sigma. \varphi} \quad \text{if } x : \sigma \notin \mathsf{FV}(\Delta)$$

$$(\forall \text{-elimination}) \qquad \frac{\Delta \vdash \forall x : \sigma. \varphi}{\Delta \vdash \varphi[t/x]} \qquad \qquad \text{if } t : \sigma$$

$$\frac{\Delta \vdash \varphi}{\Delta \vdash \psi} \qquad \text{if } \varphi =_{\beta} \psi$$

Church has additional things that we will not consider now:

- Negation connective with rules
- Classical logic

$$\frac{\Delta \vdash \neg \neg \varphi}{\Delta \vdash \varphi}$$

- Define other connectives in terms of \supset , \forall , \neg (classically).
- Choice operator $\iota_{\sigma}:(\sigma{
 ightarrow}\mathsf{prop}){
 ightarrow}\sigma$
- Rule for *ι*:

$$\frac{\Delta \vdash \exists ! x : \sigma . P \, x}{\Delta \vdash P(\iota_{\sigma} P)}$$

Church' original higher order logic is basically the logic of the theorem prover HOL (Gordon, Melham, Harrison) and of Isabelle-HOL (Paulson, Nipkow).

We will here restrict to the basic constructive core (\forall, \supset) of HOL.

The need for a conversion rule:

$$\frac{\Delta \vdash \forall P : N \! \to \! \mathsf{prop.}(\ldots Pc \ldots)}{\Delta \vdash (\ldots (\lambda y : N.y > 0)c \ldots)} \, \forall \text{-elim} \\ \frac{\Delta \vdash (\ldots c > 0 \ldots)}{\Delta \vdash (\ldots c > 0 \ldots)}$$

Definability of other connectives (constructively):

Idea:

The definition of a connective is an encoding of the elimination rule.

Existential quantifier

$$\exists x : \sigma. \varphi := \forall \alpha : \mathsf{prop.}(\forall x : \sigma. \varphi \supset \alpha) \supset \alpha$$

Derivation of the elimination rule in HOL.

$$\begin{array}{c} [\varphi] \\ \vdots \\ \exists x : \sigma. \varphi \quad C \\ \hline C \end{array} \qquad x \notin \mathsf{FV}(C, \mathsf{ass.}) \qquad \begin{array}{c} [\varphi] \\ \vdots \\ \exists x : \sigma. \varphi \\ \hline (\forall x : \sigma. \varphi \supset C) \supset C \end{array} \qquad \begin{array}{c} C \\ \hline \forall x : \sigma. \varphi \supset C \\ \hline C \end{array}$$

Existential quantifier

$$\exists x : \sigma. \varphi := \forall \alpha : \mathsf{prop.}(\forall x : \sigma. \varphi \supset \alpha) \supset \alpha$$

Derivation of the introduction rule in HOL.

$$\frac{\varphi[t/x]}{\exists x : \sigma. \varphi} \qquad \frac{\varphi[t/x]}{\varphi[t/x] \quad \varphi[t/x] \quad \alpha}$$

$$\frac{\varphi[t/x]}{\neg \varphi[t/x]} \qquad \frac{\varphi[t/x] \quad \varphi[t/x] \quad \alpha}{\neg \alpha}$$

$$\frac{(\forall x : \sigma. \varphi \supset \alpha) \supset \alpha}{\exists x : \sigma. \varphi}$$

Equality is definable in higher order logic:

t and q terms are equal if they share the same properties (Leibniz equality)

Definition in HOL (for t, q : A):

$$t =_{A} q := \forall P : A \rightarrow \mathsf{prop.}(Pt \supset Pq)$$

- This equality is reflexive and transitive (easy)
- It is also symmetric(!) Trick: find a "smart" predicate P

Exercise: Prove reflexivity, transitivity and symmetry of $=_A$.

Exercise:

The transitive closure of a binary relation R on A has been defined as follows.

$$\mbox{trclos}\,R \quad := \quad \lambda x, y : A.$$

$$(\forall Q : A {\rightarrow} A {\rightarrow} \mbox{Prop.} (\mbox{trans}(Q) {\rightarrow} (R \subseteq Q) {\rightarrow} (Q \, x \, y))).$$

- 1. Prove that the transitive closure is transitive.
- 2. Prove that the transitive closure of R contains R.

$$(\mathsf{axiom}) \qquad \qquad \Delta \vdash \varphi \qquad \qquad \mathsf{if} \ \varphi \in \Delta$$

$$(\supset -introduction) \quad \frac{\Delta \cup \varphi \vdash \psi}{\Delta \vdash \varphi \supset \psi}$$

$$(\supset \text{-elimination}) \qquad \frac{\Delta \vdash \varphi \supset \psi \quad \Delta \vdash \varphi}{\Delta \vdash \psi}$$

$$(\forall \text{-introduction}) \quad \frac{\Delta \vdash \varphi}{\Delta \vdash \forall x : \sigma. \varphi} \quad \text{if } x : \sigma \notin \mathsf{FV}(\Delta)$$

$$(\forall \text{-elimination}) \qquad \frac{\Delta \vdash \forall x : \sigma. \varphi}{\Delta \vdash \varphi[t/x]} \qquad \qquad \text{if } t : \sigma$$

$$\frac{\Delta \vdash \varphi}{\Delta \vdash \psi} \qquad \text{if } \varphi =_{\beta} \psi$$

Why not introduce a λ -term notation for the derivations?

This gives a type theory λHOL

- No 'lifting' of prop to the type level (via T : prop→type).
- Let prop be a new 'universe' of propositional types.
- ullet Direct encoding (shallow embedding) of HOL into the type theory $\lambda {
 m HOL}$

$$\begin{array}{ll} \text{(axiom)} & \overline{\Delta \vdash x : \varphi} & \text{if } x : \varphi \in \Delta \\ \\ \text{(} \supset \text{-introduction)} & \frac{\Delta, x : \varphi \vdash M : \psi}{\Delta \vdash \lambda x : \varphi . M : \varphi \supset \psi} \\ \\ \text{(} \supset \text{-elimination)} & \frac{\Delta \vdash M : \varphi \supset \psi \ \Delta \vdash N : \varphi}{\Delta \vdash M N \psi} \\ \\ \text{(} \forall \text{-introduction)} & \frac{\Delta \vdash M : \varphi}{\Delta \vdash \lambda x : \sigma . M : \forall x : \sigma . \varphi} & \text{if } x : \sigma \notin \mathsf{FV}(\Delta) \\ \\ \text{(} \forall \text{-elimination)} & \frac{\Delta \vdash M : \forall x : \sigma . \varphi}{\Delta \vdash M t : \varphi[t/x]} & \text{if } t : \sigma \\ \\ \text{(conversion)} & \frac{\Delta \vdash M : \varphi}{\Delta \vdash M : \varphi} & \text{if } \varphi =_{\beta} \psi \\ \end{array}$$

 $\Delta \vdash M : \psi$

Now we have two 'levels' of type theories

- The (simple) type theory describing the language of HOL
- The type theory for the proof-terms of HOL

NB Many rules, many similar rules.

We put these levels together into one type theory λHOL . Pseudoterms:

$$T ::= Prop | Type | Type' | Var | (\Pi Var:T.T) | (\lambda Var:T.T) | TT$$

 $\{\mathsf{Prop}, \mathsf{Type}, \mathsf{Type'}\}\$ is the set of sorts, \mathcal{S} .

Some of the typing rules are parametrized

$$(\text{axiom}) \quad \vdash \mathsf{Prop} : \mathsf{Type} \qquad \qquad \vdash \mathsf{Type} : \mathsf{Type}'$$

$$(\mathsf{var}) \qquad \frac{\Gamma \vdash A : s}{\Gamma, x : A \vdash x : A} \qquad (\mathsf{weak}) \qquad \frac{\Gamma \vdash A : s}{\Gamma, x : A \vdash M : C}$$

$$\frac{\Gamma, x:A \vdash M:B \quad \Gamma \vdash \Pi x:A.B:s}{\Gamma \vdash \lambda x:A.M:\Pi x:A.B}$$

$$\frac{\Gamma \vdash M: \Pi x : A.B \quad \Gamma \vdash N: A}{\Gamma \vdash MN: B[N/x]}$$

$$(\operatorname{conv}) \quad \frac{\Gamma \vdash M : A \quad \Gamma \vdash B : s}{\Gamma \vdash M : B} \text{ if } A =_{\beta} B$$

$$(\Pi) \quad \frac{\Gamma \vdash A : s_1 \quad \Gamma, x : A \vdash B : s_2}{\Gamma \vdash \Pi x : A . B : s_2} \quad \text{if } (s_1, s_2) \in \quad \{ \text{ (Type, Type)}, \\ \text{ (Prop, Prop)}, (\text{Type, Prop)} \}$$

• The combination (Type, Type) forms the function types $A \rightarrow B$ for A, B:Type.

This comprises the unary predicate types and binary relations types: $A \rightarrow Prop$ and $A \rightarrow A \rightarrow Prop$.

Also: higher order predicate types like $(A \rightarrow A \rightarrow Prop) \rightarrow Prop$. NB A Π -type formed by (Type, Type) is always an \rightarrow -type.

- (Prop,Prop) forms the propositional types $\varphi \rightarrow \psi$ for φ, ψ :Prop; implicational formulas.
 - NB A Π -type formed by (Type, Type) is always an \rightarrow -type.
- (Type, Prop) forms the dependent propositional type $\Pi x: A.\varphi$ for A: Type, $\varphi:$ Prop; universally quantified formulas.

Example: Deriving irreflexivity from anti-symmetry

$$\begin{array}{lll} \mathsf{Rel} & := & \lambda X : \mathsf{Type}.X \! \to \! X \! \to \! \mathsf{Prop} \\ \mathsf{AntiSym} & := & \lambda X : \mathsf{Type}.\lambda R : (\mathsf{Rel}\,X). \forall x,y : X.(Rxy) \supset (Ryx) \supset \bot \\ \mathsf{Irrefl} & := & \lambda X : \mathsf{Type}.\lambda R : (\mathsf{Rel}\,X). \forall x : X.(Rxx) \supset \bot \end{array}$$

Derivation in HOL:

$$\frac{\forall x^{A}y^{A}R \, x \, y \supset R \, y \, x \supset \bot}{\forall y^{A}R \, x \, y \supset R \, y \, x \supset \bot} \qquad [R \, x \, x]$$

$$\frac{R \, x \, x \supset L}{R \, x \, x \supset \bot} \qquad [R \, x \, x]$$

$$\frac{\bot}{R \, x \, x \supset \bot}$$

$$\frac{R \, x \, x \supset \bot}{\forall x^{A}, R \, x \, x \supset \bot}$$

Derivation in HOL, with terms:

Typing judgement in λ HOL:

$$A: \mathsf{Type}, R: A \longrightarrow A \longrightarrow \mathsf{Prop}, \quad z: \Pi x, y: A. (R\, x\, y \longrightarrow R\, y\, x \longrightarrow \bot) \vdash \\ \lambda x: A \lambda q: (R\, x\, x). z\, x\, x\, q\, q: (\Pi x: A. R\, x\, x \longrightarrow \bot)$$

Question: is the type theory λHOL really isomorphic with HOL?

Yes: we can disambiguate the syntax. [No details.]

Properties of λ HOL.

Uniqueness of types

If $\Gamma \vdash M : A$ and $\Gamma \vdash M : B$, then $A =_{\beta} B$.

• Subject Reduction

If $\Gamma \vdash M : A$ and $M \longrightarrow_{\beta} N$, then $\Gamma \vdash N : A$.

Strong Normalization

If $\Gamma \vdash M : A$, then all β -reductions from M terminate.

Proof of SN is a higher order extension of the one for $\lambda 2$ (using the saturated sets).

Decidability Questions:

 $\Gamma \vdash M : \sigma$? TCP

 $\Gamma \vdash M : ?$ TSP

 $\Gamma \vdash ? : \sigma$ TIP

For λ HOL:

- TIP is undecidable
- TCP/TSP: simultaneously.

The type checking algorithm is close to the one for λP . (In λP we had a judgement of correct context; this form of judgement could also be introduced for λHOL)

 λ HOL contains $\lambda 2$ and $\lambda \rightarrow$.

This rule allows to form

- \rightarrow -types on the Type-level (one copie of $\lambda \rightarrow$)
- \rightarrow -types on the Prop-level (second copie of $\lambda \rightarrow$)
- $\Pi\alpha$:Prop. $\alpha \rightarrow \alpha$: polymorphic types on the Prop-level (one copie of $\lambda 2$)

$$(\Pi) \quad \frac{\Gamma \vdash A : s_1 \quad \Gamma, x : A \vdash B : s_2}{\Gamma \vdash \Pi x : A : B : s_2} \quad \text{if } (s_1, s_2) \in \quad \{ \text{ (Type, Type)}, \\ \text{ (Prop, Prop)}, (\text{Type, Prop)} \}$$

Why not extend λHOL to include

- Higher order logic over polymorphic domains? like ΠA : Type. $A \rightarrow A$
- Quantification over all domains? like in ΠA : Type. $\Pi P:A \rightarrow \text{Prop.}\Pi x:A.P x \rightarrow P x$

This can easily be done by allowing in the Π -rule

- $(s_1, s_2) \in \{ (\mathsf{Type}', \mathsf{Type}) \}$ to obtain higher order logic over polymorphic domains \leadsto system λU^-
- $(s_1, s_2) \in \{ (\mathsf{Type}', \mathsf{Prop}) \}$ to allow quantification over all domains $\rightsquigarrow \mathsf{system} \ \lambda U$

Problem:

- λU (λ HOL + (Type',Type) and (Type',Prop)) is inconsistent (Girard)
- λU^- (λ HOL + (Type',Type)) is inconsistent (Coquand, Hurkens)

NB λ HOL + (Type', Prop) is consistent.

Implications

- λU^- can't be used as a logic.
- In λU^- , there is a closed term M with $\vdash M : \bot$
- \bullet This M can not be in normal form (by some syntactic reasoning)
- So, λU^- is not SN

Type Checking in λU^- is still decidable:

All types (terms of type Prop, Type or Type') are strongly normalizing

$$\mathrm{Type}_{\Gamma}(MN) \ = \ \mathrm{if} \ \mathrm{Type}_{\Gamma}(M) = C \ \mathrm{and} \ \mathrm{Type}_{\Gamma}(N) = D$$

$$\mathrm{then} \quad \mathrm{if} \ C \twoheadrightarrow_{\beta} \Pi x : A.B \ \mathrm{and} \ A =_{\beta} D$$

$$\mathrm{then} \ B[N/x] \ \mathrm{else} \ \mathrm{`false'},$$

$$\mathrm{else} \quad \mathrm{`false'},$$

In the type synthesis algorithm we only check equality of types

Variations on the rules of λ HOL:

- There are many type system with (slightly) different rules
- Many (proofs of) properties are similar
- Plan: Study these type systems in one general framework:
 - The cube of typed λ -calculi (Barendregt)
 - Pure Type Systems (Terlouw, Berardi)

The cube of typed λ -calculi: (forget about Type' for the moment) Vary on all possible combinations for

$$\mathcal{R} \subseteq \{ (\mathsf{Prop}, \mathsf{Prop}), (\mathsf{Type}, \mathsf{Prop}), (\mathsf{Type}, \mathsf{Type}), (\mathsf{Prop}, \mathsf{Type}) \}$$

in the Π -rule:

$$(\Pi) \quad \frac{\Gamma \vdash A : s_1 \quad \Gamma, x : A \vdash B : s_2}{\Gamma \vdash \Pi x : A \cdot B : s_2} \quad \text{if } (s_1, s_2) \in \quad \mathcal{R}$$

We take $(\mathsf{Prop}, \mathsf{Prop})$ in every \mathcal{R}

$$(\Pi) \quad \frac{\Gamma \vdash A : s_1 \quad \Gamma, x : A \vdash B : s_2}{\Gamma \vdash \Pi x : A \cdot B : s_2} \quad \text{if } (s_1, s_2) \in \quad \mathcal{R}$$

System	\mathcal{R}			
$\lambda { ightarrow}$	(Prop, Prop)			
$\lambda 2$ (system F)	(Prop, Prop)	(Type,Prop)		
λP (LF)	(Prop, Prop)		(Prop,Type)	
$\lambda \overline{\omega}$	(Prop, Prop)			(Type, Type)
λ P2	(Prop, Prop)	(Type,Prop)	(Prop,Type)	
$\lambda \omega$ (system $F\omega$)	(Prop, Prop)	(Type,Prop)		(Type, Type)
$\lambda P\overline{\omega}$	(Prop, Prop)		(Prop,Type)	(Type, Type)
$\lambda P\omega$ (CC)	(Prop, Prop)	(Type,Prop)	(Prop,Type)	(Type, Type)

 $\lambda \rightarrow$ in this presentation is equivalent to $\lambda \rightarrow$ in the way we've presented before. Similarly for $\lambda 2$, λP , ... This cube also gives a fine structure for the

Calculus of Constructions, CC (Coquand and Huet)

CC has:

- Polymorphic data types on the Prop-level, e.g. $\Pi\alpha$:Prop. $\alpha \rightarrow (\alpha \rightarrow \alpha) \rightarrow \alpha$.
- Predicate domains on the Type-level, e.g. $N \rightarrow N \rightarrow Prop$
- Logic on the Prop-level, e.g. $\varphi \wedge \psi := \Pi \alpha : \text{Prop.}(\varphi \rightarrow \psi \rightarrow \alpha) \rightarrow \alpha$.
- Universal quantification (first and higher order), e.g. $\Pi P: N \rightarrow \text{Prop.} \Pi x: N. Px \rightarrow Px$.

One can do higher order predicate logic in CC, in a slightly unusual way:

- 'propositions' and first order 'sets' are both of type Prop
- propositions and sets are completely mixed

Is it faithful to do higher order predicate logic in CC??

Answer: No!

There are non-provable formulas of HOL that become inhabited in CC

Consider extensionality of propostions:

$$\mathsf{EXT} := \forall \alpha, \beta : \mathsf{prop}. (\alpha \Leftrightarrow \beta) \Rightarrow (\alpha =_{\mathsf{prop}} \beta)$$

In CC, this becomes $\Pi\alpha, \beta$:Prop. $(\alpha \leftrightarrow \beta) \rightarrow (\alpha =_{\mathsf{Prop}} \beta)$

Suppose two base domains A and B and constants a:A, b:B. In HOL, the following formulas are consistent.

•
$$\varphi := \forall x : A . x = a, \ \psi := \forall x : B . \exists y : B . x \neq y$$

But in CC, EXT also applies to the base sets A and B.

$$A \leftrightarrow B$$
 (both are non-empty) so $A =_{\mathsf{Prop}} B$

- so property ψ (of B) also applies to A
- so $\forall x : A . \exists y : A . x \neq y$ contradicting φ

So, in CC, φ and ψ are inconsistent

We have to be careful when doing higher order logic in CC.

Or: we may try to improve on this: taking the sets and the propositions apart:

System $\lambda PRED\omega$:

- Sorts: Prop, Set, Type^p, Type^s
- Axioms for these sorts: Prop : Type^p, Set : Type^s

• Rules R:

- (Prop, Prop): implication
- (Set, Prop): first order quantification
- (Type^p, Prop): higher order quantification
- (Set, Set): function types
- (Set, Type^p): predicate types
- $(\mathsf{Type}^p, \mathsf{Type}^p)$: higher order types

Pure Type Systems

Determined by a triple (S, A, R) with

- S the set of sorts
- \mathcal{A} the set of axioms, $\mathcal{A} \subseteq \mathcal{S} \times \mathcal{S}$
- \mathcal{R} the set of rules, $\mathcal{R} \subseteq \mathcal{S} \times \mathcal{S} \times \mathcal{S}$

If $s_2 = s_3$ in $(s_1, s_2, s_3) \in \mathcal{R}$, we write $(s_1, s_2) \in \mathcal{R}$.

pseudoterms:

$$\mathsf{T} ::= \mathcal{S} \, | \, \mathsf{Var} \, | \, (\Pi \mathsf{Var} : \mathsf{T}.\mathsf{T}) \, | \, (\lambda \mathsf{Var} : \mathsf{T}.\mathsf{T}) \, | \, \mathsf{TT}.$$

(sort)
$$\vdash s_1 : s_2 \text{ if } (s_1, s_2) \in \mathcal{A} \text{ (var) } \frac{\Gamma \vdash A : s}{\Gamma, x : A \vdash x : A} \text{ if } x \notin \Gamma$$

$$(\text{weak}) \quad \frac{\Gamma \vdash A : s \quad \Gamma \vdash M : C}{\Gamma, x : A \vdash M : C} \quad \text{if } x \notin \Gamma$$

$$(\Pi) \qquad \frac{\Gamma \vdash A : s_1 \quad \Gamma, x : A \vdash B : s_2}{\Gamma \vdash \Pi x : A : B : s_3} \quad \text{if } (s_1, s_2, s_3) \in \mathcal{R}$$

$$\frac{\Gamma, x:A \vdash M:B \quad \Gamma \vdash \Pi x:A.B:s}{\Gamma \vdash \lambda x:A.M:\Pi x:A.B}$$

$$\frac{\Gamma \vdash M: \Pi x : A.B \quad \Gamma \vdash N: A}{\Gamma \vdash MN: B[N/x]}$$

$$(\operatorname{conv}_{\beta}) \quad \frac{\Gamma \vdash M : A \quad \Gamma \vdash B : s}{\Gamma \vdash M : B} \ A =_{\beta} B$$

Examples of PTSs

CC

- \mathcal{S} Prop, Type
- \mathcal{A} Prop : Type
- \mathcal{R} (Prop, Prop), (Prop, Type), (Type, Prop), (Type, Type)

λ PRED ω

- \mathcal{S} Set, Type^s, Prop, Type
- \mathcal{A} Set: Type^s, Prop: Type
- \mathcal{R} (Set, Set), (Set, Type), (Type, Type), (Prop, Prop),

(Set, Prop), (Type, Prop)

$\lambda \mathsf{HOL}$

- \mathcal{S} Prop, Type, Type'
- \mathcal{A} Prop : Type, Type : Type'
- \mathcal{R} (Prop, Prop), (Type, Type), (Type, Prop)

λU

- S Prop, Type, Type'
- $\mathcal{A} \quad \mathsf{Prop} : \mathsf{Type}, \mathsf{Type} : \mathsf{Type}'$
- $\mathcal{R} \quad (\mathsf{Prop}, \mathsf{Prop}), (\mathsf{Type}, \mathsf{Type}), (\mathsf{Type}', \mathsf{Type}), (\mathsf{Type}', \mathsf{Prop}), (\mathsf{Type}, \mathsf{Prop})$

$$\lambda\star$$

$$\mathcal{S}$$
 \star

$$\mathcal{A}$$
 $\star:\star$

$$\mathcal{R} \quad (\star, \star)$$

A PTS-morphism from $\lambda(\mathcal{S}, \mathcal{A}, \mathcal{R})$ to $\lambda(\mathcal{S}', \mathcal{A}', \mathcal{R}')$ is an $f: \mathcal{S} \to \mathcal{S}'$ that preserves the axioms and rules:

- if $(s_1, s_2) \in \mathcal{A}$ then $(f(s_1), f(s_2)) \in \mathcal{A}'$
- if $(s_1, s_2, s_3) \in \mathcal{R}$ then $(f(s_1), f(s_2), f(s_3)) \in \mathcal{R}'$

f extends the pseudoterms and contexts:

If
$$\Gamma \vdash M : A$$
 then $f(\Gamma) \vdash f(M) : f(A)$

There are now two type systems for higher order predicate logic: $\lambda \mathsf{PRED}\omega$ and $\lambda \mathsf{HOL}.$

λ PRED ω	U
3	Set, Type S , Prop, Type
J-	Set: Type $^{\mathcal{S}}$, Prop: Type
\mathcal{T}	$R \qquad (Set, Set), (Set, Type), (Type, Type), (Prop, Prop),\\$
	(Set,Prop),(Type,Prop)
λ HOL	
S	Prop, Type, Type
\mathcal{A}	Prop : Type, Type : Type'
$\mathcal R$	(Prop, Prop), (Type, Type), (Type, Prop)

They are equivalent:

The PTS-morphism $h: \lambda PRED\omega \rightarrow \lambda HOL$, given by

$$h(\mathsf{Prop}) := \mathsf{Prop} \quad h(\mathsf{Set}) := \mathsf{Type}$$

$$h(\mathsf{Type}^p) \ := \ \mathsf{Type} \ h(\mathsf{Type}^s) \ := \ \mathsf{Type}'$$

constitutes an isomorphism between the derivable sequents.

What is the use of the abstract framework of PTSs?

- Present (the kernel of) systems in a uniform way
- Compare systems (e.g. λ HOL, λ PRED ω , CC) within one framework
- Prove properties for all systems at once.

Properties of PTSs.

Uniqueness of types

If $\Gamma \vdash M : A$ and $\Gamma \vdash M : B$, then $A =_{\beta} B$. Holds if $\mathcal{A} \subseteq \mathcal{S} \times \mathcal{S}$ and $\mathcal{R} \subseteq (\mathcal{S} \times \mathcal{S}) \times \mathcal{S}$ are functions. Definition A PTS where \mathcal{A} and \mathcal{R} are functions is called a functional PTS (or singly sorted PTS).

Subject Reduction

If $\Gamma \vdash M : A$ and $M \longrightarrow_{\beta} N$, then $\Gamma \vdash N : A$.

Substitution property

If
$$\Gamma, x: B, \Delta \vdash M: A, \Gamma \vdash P: B$$
, then $\Gamma, \Delta[P/x] \vdash M[P/x]: A[P/x].$

Properties of PTSs ctd.

Thinning

If $\Gamma \vdash M : A$ and $\Gamma \subseteq \Delta$, Δ well-formed, then $\Delta \vdash M : A$.

Strengthening

If
$$\Gamma, x: B, \Delta \vdash M: A$$
 and $x \notin \mathsf{FV}(M, A, \Delta)$, then $\Gamma, \Delta \vdash M: A$.

Strong Normalization (SN)

If $\Gamma \vdash M : A$, then all β -reductions from M terminate.

SN holds for some PTSs, and for some not.

SN for CC is proved by a higher order extension of the saturated sets argument (for $\lambda 2$).

Some more examples of PTSs

```
\begin{split} &\mathcal{C}C^{\infty} \\ &\mathcal{S} \quad \mathsf{Prop}, \{\mathsf{Type}_i\}_{i \in \mathbb{N}} \\ &\mathcal{A} \quad \mathsf{Prop}: \mathsf{Type}, \mathsf{Type}_i: \mathsf{Type}_{i+1} \\ &\mathcal{R} \quad (\mathsf{Prop}, \mathsf{Prop}), (\mathsf{Prop}, \mathsf{Type}_i), (\mathsf{Type}_i, \mathsf{Prop}) \\ &\quad (\mathsf{Type}_i, \mathsf{Type}_j, \mathsf{Type}_{\max(i,j)}) \end{split}
```

Recall that $(\mathsf{Type}_1, \mathsf{Type}_0, \mathsf{Type}_0)$ is inconsistent (λU) Similarly $(\mathsf{Type}_{i+1}\mathsf{Type}_i, \mathsf{Type}_i)$ would be inconsistent.

The Extended Calculus of Constructions has in addition

• Cumulativity: $\mathsf{Prop} \subseteq \mathsf{Type}_0 \subseteq \mathsf{Type}_1 \subseteq \ldots$, so

$$\frac{\Gamma \vdash A : \mathsf{Prop}}{\Gamma \vdash A : \mathsf{Type}_0} \qquad \frac{\Gamma \vdash A : \mathsf{Type}_i}{\Gamma \vdash A : \mathsf{Type}_{i+1}}$$

• Σ -types:

$$\frac{\Gamma \vdash A : \mathsf{Prop} \ \Gamma, x : A \vdash B : \mathsf{Prop}}{\Gamma \vdash \Sigma x : A . B : \mathsf{Prop}} \qquad \frac{\Gamma \vdash A : \mathsf{Type}_i \ \Gamma, x : A \vdash B : \mathsf{Type}_j}{\Gamma \vdash \Sigma x : A . B : \mathsf{Type}_{\max(i,j)}}$$

For φ : Prop

- We have ΠA : Type_i. φ : Prop. but
- We do not have ΣA :Type_i. φ : Prop.

Note: The type theory of Coq has in addition Set: Type and rules $(Set, Set), (Type_i, Set), (Set, Prop).$

Σ -types

$$\frac{\Gamma \vdash A : \mathsf{Type} \ \Gamma, x : A \vdash B : \mathsf{Prop}}{\Gamma \vdash \Sigma x : A : B : \mathsf{Prop}}$$

leads to inconsistency:

- Define $\Omega := \Sigma A : \operatorname{Set}.\Sigma R : A \to A \to \operatorname{Prop.wf}(R)$ wf(R) denotes that R is well-founded. (No infinite descending R-chains).
- Define < on Ω by

$$(A,R)<(B,Q):=R$$
 can be embedded into Q under some $b:B$

Then

- -< is well-founded on Ω
- If (A,R) well-founded, then $(A,R)<(\Omega,<)$

so contradiction:
$$\ldots < (\Omega, <) < (\Omega, <) < (\Omega, <).$$

Intensionality versus Extensionality

The equality in the side condition in the conv rule is intensional and decidable. It can also be extensional.

Extensional equality amounts to the following rules:

$$(\text{ext}) \qquad \frac{\Gamma \vdash M, N : A \rightarrow B \quad \Gamma \vdash p : \Pi x : A.(Mx = Nx)}{\Gamma \vdash M = N : A \rightarrow B}$$

$$(\text{conv}) \qquad \frac{\Gamma \vdash P : A \quad \Gamma \vdash A = B : s}{\Gamma \vdash P : B}$$

- Intensional equality of functions = equality of algorithms
 (the way the function is presented to us (syntax))
- Extensional equality of functions = equality of graphs
 (the (set-theoretic) meaning of the function (semantics))

Adding the rule (ext) renders TCP undecidable:

Suppose $H:(A \rightarrow B) \rightarrow \mathsf{Prop}$ and $x:(H\ f)$; then $x:(H\ g) \text{ iff there is a } p:\Pi x : A.f\ x=g\ x$

So, to solve this TCP, we need to solve a TIP.

The interactive theorem prover Nuprl is based on extensional type theory.