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The original motivation of Church to introduce simple type theory was:
to define higher order (predicate) logic
In A— he adds the following
e prop as a basic type
® D : prop—prop—prop
e Y, : (c—prop)—prop (for each type o)

This defines the language of higher order logic.



e Induction
VN—prop(  AP:N—prop.(P0)
D (Vy(Ax:N.(Px D P(Sx)))
D Vn(Az:N.Px)) )

Notation: VP:N—prop( (PO0)
D (Vo:N.(Px D P(S)))
D Va:N.Px )

e Higher order predicates/functions: transitive closure of a relation R

AR : A—A—prop. A,y : A.
(VQ : A—A—prop. (trans(Q) D (RC Q) D Qxy))

of type
(A—A—prop)—(A—A—prop)



Derivation rules for Higher Order Logic (following Church)
e Natural deduction style.
e Rules are ‘on top’ of the simple type theory.

e Judgements are of the form

Al_f‘gp

— A=, Y

— I'i1s a A—-context

— '@ :prop, I' =y : prop,..., I' =, : prop
— I is usually left implicit: A F ¢



(axiom) AlF g if pe€ A

AUpE
Al oDy

(D -introduction)

AFp>Y Ak

(D -elimination)

A
Al
(V-introduction) if x:0 ¢ FV(A)
AFVrio.p
AFVz.o.0
(V-elimination) ift:o
At olt/z]
Al
(conversion) — if o =51

AF



Church has additional things that we will not consider now:
e Negation connective with rules

e Classical logic
A+ Y2

Al

e Define other connectives in terms of D, V, = (classically).

e Choice operator 1, : (c—prop)—o

e Rule for ¢:
AFAlzo.Px

AF P(i,P)

Church’ original higher order logic is basically the logic of the theorem
prover HOL (Gordon, Melham, Harrison) and of Isabelle-HOL (Paulson,
Nipkow).

We will here restrict to the basic constructive core (V, D) of HOL.



The need for a conversion rule:
AFYP:N—prop.(...Pc...)
AF(...(A\y:N.y > 0)c...)
AF(...c>0...)

V-elim

conv



Definability of other connectives (constructively):

1 = Va:prop.a
N = Va:prop.(p DY D a) D«
eV = Vaprop.(p Da)D (Y Da) D«
dr:o.p = Va:prop.(Vr:o.0 D a) D«

|dea:

The definition of a connective is an encoding of the elimination rule.



Existential quantifier

dz:0.¢ := Ya:prop.(Vx:0.0 D a) D «
Derivation of the elimination rule in HOL.
]
] .
Jx:o.p C
x & FV(C, ass.) (Vx:op D C) D C Vrxiop D C
C

dr:o.po O
C




Existential quantifier

dz:0.¢ ;= VYa:prop.(Vx:0.0 D a) D «

Derivation of the introduction rule in HOL.

Vx:o.p D al
ot/ plt/z]  elt/z] Do
Jx:o.p .

(Vxio.0 D ) D«

Jx:o.p
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Equality is definable in higher order logic:

t and q terms are equal if they share the same properties
(Leibniz equality)

Definition in HOL (for ¢,q : A):
t=aq := VP:A—prop.(Pt D Pq)
e This equality is reflexive and transitive (easy)

e It is also symmetric(!) Trick: find a “smart” predicate P

Exercise: Prove reflexivity, transitivity and symmetry of = 4.
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Exercise:
The transitive closure of a binary relation R on A has been defined as
follows.

trclosR = Az, y:A.
(VQ: A— A—Prop.(trans(Q)—(R C Q)—(Qx1))).
1. Prove that the transitive closure is transitive.

2. Prove that the transitive closure of R contains R.
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(axiom)

(D -introduction)

(D -elimination)

(V-introduction)

(V-elimination)

(conversion)

Al

AUpE
Al oDy

AFp>Y Ak

A F )

Al
AFVrio.p

AFVz.o.0
At plt/a]

Al p

AF

if o€ A

if x:0 ¢ FV(A)

ift:o

if o =g

13



Why not introduce a A-term notation for the derivations?

This gives a type theory AHOL
e No ‘lifting’ of prop to the type level (via T : prop—type).
e Let prop be a new ‘universe’ of propositional types.

e Direct encoding (shallow embedding) of HOL into the type theory
AHOL
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(axiom)

(D -introduction)

(D -elimination)

(V-introduction)

(V-elimination)

(conversion)

AFxz:o

A,z M )

AFAx:o.M:p D
AFM:pD9Y AFN:p

AF M N
A DM:op

A Ao M :Vx.o.p
A M:Vr.o.p

At Mt:p|t/z]
A DM:op

A M:

if z:p e A

if x:0 ¢ FV(A)

ift:o

if o=
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Now we have two ‘levels’ of type theories
e The (simple) type theory describing the language of HOL
e The type theory for the proof-terms of HOL

NB Many rules, many similar rules.

We put these levels together into one type theory AHOL.
Pseudoterms:

T ::= Prop | Type | Type’ | Var | (IIVar:T.T) | (A\Var:T.T) | TT
{Prop, Type, Type'} is the set of sorts, S.

Some of the typing rules are parametrized

16



(axiom)

(var)

~ Prop : Type

I'-A:s

I'New:AFx: A

(weak)

~ Type: Type'

I'A:s T'HM:C

I'o:AFM:C
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- A-: S1 F,ZC:A - B : S92 if (81, 82) c { (Type, Type)a

IT)
( I'-1lx:A.B : s (Prop, Prop), (Type, Prop) }
N I''e:AFM:B T FIIz:A.B:s
' e:AM :1lx:A.B
I'-M:1lz:AB T'HFN:A
(app)

[+ MN : B[N/z]

'EM:A T'HB:s.
(COHV) IfAIﬁB
I'-M:B
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I'FA:sy Lx:AEB:sy if (s1,52) € { (Type, Type),
[' - 1lz:A.B : s9 (Prop, Prop), (Type, Prop) }

(1)

e The combination (Type, Type) forms the function types A— B for
A, B:Type.
This comprises the unary predicate types and binary relations types:
A—Prop and A—A—Prop.
Also: higher order predicate types like (A— A—Prop)—Prop.
NB A Il-type formed by (Type, Type) is always an —-type.

e (Prop,Prop) forms the propositional types p—1) for ¢, 1:Prop;
implicational formulas.
NB A Il-type formed by (Type, Type) is always an —-type.

e (Type,Prop) forms the dependent propositional type Ilx:A.¢ for
A:Type, :Prop; universally quantified formulas.
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Example: Deriving irreflexivity from anti-symmetry

Rel = AX:Type.X—X—Prop
AntiSym := AX:Type.AR:(Rel X).Vx,y: X.(Rxy) D (Ryx) D L
Irrefl = AX:Type.AR:(Rel X).Vr:X.(Rxzx) D L

Derivation in HOL:
Vedy*Rxy D Ryxz D L
Vy*Rzy D Ryx D L

Rxx D Rzxx D L R x x]
Rxx D L R x x]
L
Rxx D 1

Ve Raxx DO L
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Derivation in HOL, with terms:

2 Vey Rey D Ryxz O L

zx:Vy?*Rxy D Ryx D L

zxr:Rxx D Rrxx D L lq: Rz x]

zrxxq: Rrxae D L lq: Rx x|

zrrqq : L

AN:(Rxx).zrxqq: Rrax D L
\e:ANg:(Rxx).zzxqq : Ve .Rxx D L

Typing judgement in AHOL:

A:Type, R:A—A—Prop, z: Iz, y:A(Rxy—Ryx—1)F
A ANg:(Rxx).zxxqq: (A Rxx— 1)
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Question: is the type theory AHOL really isomorphic with HOL?

Yes: we can disambiguate the syntax. [No details.]
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Properties of AHOL.

e Uniqueness of types
fI'=M:Aand ' =M : B, then A=3B.

e Subject Reduction
fI'=M:Aand M —g N, thenI' - N : A.

e Strong Normalization
If I' = M : A, then all B-reductions from M terminate.

Proof of SN is a higher order extension of the one for A2 (using the

saturated sets).
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Decidability Questions:

I'-M:07 TCP
I'M:? TSP
I'E?:0 TIP

For AHOL:
e TIP is undecidable

e TCP/TSP: simultaneously.
The type checking algorithm is close to the one for AP. (In AP we

had a judgement of correct context; this form of judgement could
also be introduced for AHOL)
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AHOL contains A2 and \—.

I'FA:sy I'x:AEB:sy if (s1,s2) € { (Type, Type),
I'-1lx:A.B : S9 (Prop7 Prop), (Type7 Prop) }

(1)

This rule allows to form
e —-types on the Type-level (one copie of \—)
e —-types on the Prop-level (second copie of A—)

e Ila:Prop.a—a: polymorphic types on the Prop-level (one copie of
A2)
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- A: S1 F,ZC:A - B : S92 if (81, 82) c { (Type, Type)a

(1)
I'+Ixz:AB : s, (Prop, Prop), (Type, Prop) }

Why not extend AHOL to include

e Higher order logic over polymorphic domains?
like ITA : Type.A—A

e Quantification over all domains?
like in IIA : Type.IlP:A—Prop.Illx:A.Px—Px

This can easily be done by allowing in the II-rule

e (s1,s2) € { (Type', Type) } to obtain higher order logic over
polymorphic domains ~» system AU~

e (s1,82) € { (Type',Prop) } to allow quantification over all domains
~ system AU
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Problem:

e \U (MHOL + (Type',Type) and (Type',Prop)) is inconsistent
(Girard)

e \U™ (AHOL + (Type', Type)) is inconsistent (Coquand, Hurkens)
NB AHOL + (Type',Prop) is consistent.

Implications
e AU~ can't be used as a logic.
e In A\U™, there is a closed term M with = M : L
e This M can not be in normal form (by some syntactic reasoning)

e So, \U™ is not SN
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Type Checking in AU~ s still decidable:
All types (terms of type Prop, Type or Type') are strongly normalizing

then if C' =g llz:A.Band A =3 D
then B[N/x]| else ‘false’

else  ‘false’,

In the type synthesis algorithm we only check equality of types

28



Variations on the rules of AHOL:

e There are many type system with (slightly) different rules

e Many (proofs of) properties are similar

e Plan: Study these type systems in one general framework:

— The cube of typed A-calculi (Barendregt)
— Pure Type Systems (Terlouw, Berardi)

29



The cube of typed M-calculi: (forget about Type' for the moment)

Vary on all possible combinations for

R C { (Prop, Prop), (Type, Prop), (Type, Type), (Prop, Type) }

in the Il-rule:

I'FA:s1 TI'x:AF B : sy
(11) if (s1,82) € R
I'1Ilx:A.B : s

We take (Prop, Prop) in every R

30



A2

A—

-~ \P

A

~ \Pw
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add (Type, Prop)

add (Type, Type)

(Prop, Prop)

~ add (Prop, Type)
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I'FA:s1 TI'xz:AF B : so
(1I) if (s1,82) € R
I'E1lx:A.B : s9

System R

A— (Prop, Prop)

A2 (system F) (Prop, Prop) (Type, Prop)

AP (LF) (Prop, Prop) (Prop, Type)

AW (Prop, Prop) (Type, Type)
AP2 (Prop, Prop) (Type, Prop) (Prop, Type)

Aw (system Fw) | (Prop, Prop) (Type, Prop) (Type, Type)
APw (Prop, Prop) (Prop, Type) (Type, Type)
APw (CC) (Prop, Prop) (Type, Prop) (Prop, Type) (Type, Type)
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A— In this presentation is equivalent to A— in the way we've presented
before. Similarly for A2, AP, ... This cube also gives a fine structure for
the

Calculus of Constructions, CC (Coquand and Huet)

CC has:

e Polymorphic data types on the Prop-level,

e.g. lla:Prop.a—(a—a)—a.

e Predicate domains on the Type-level,
e.g. N—N—Prop

e Logic on the Prop-level,
e.g. o AN := Ila:Prop.(p—1p—a)—a.

e Universal quantification (first and higher order),
e.g. IIP:N—Prop.llz:N.Px— Pz.
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One can do higher order predicate logic in CC, in a slightly unusual way:
e ‘propositions’ and first order ‘sets’ are both of type Prop
e propositions and sets are completely mixed

Is it faithful to do higher order predicate logic in CC?7?

Answer: No!
There are non-provable formulas of HOL that become inhabited in CC
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Consider extensionality of propostions:
EXT := Va, B:prop.(a & ) = (@ =prop )

In CC, this becomes Ilc, 3:Prop.(ac <= ) — (a =prop )

Suppose two base domains A and B and constants a : A, b: B.
In HOL, the following formulas are consistent.

o v =Vr:Ax=a, Y :=Vr:B.dy:B.x #y
But in CC, EXT also applies to the base sets A and B.
A < B (both are non-empty) so A =p,p B
so property ¢ (of B) also applies to A

so Vr:Ady:Ax #y

contradicting ¢
So, in CC, v and % are inconsistent
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We have to be careful when doing higher order logic in CC.

Or: we may try to improve on this: taking the sets and the propositions
apart:

System APREDw:

e Sorts: Prop, Set, Type?, Type®
e Axioms for these sorts: Prop : Type?, Set : Type®

e Rules R:
— (Prop, Prop): implication
Set, Prop): first order quantification
Type?, Prop): higher order quantification

= (

= (

— (Set, Set): function types

— (Set, Type®): predicate types
—(

Type?, Type): higher order types
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Pure Type Systems
Determined by a triple (S, A, R) with

e S the set of sorts
o A the set of axioms, AC S x S

e R thesetof ruless RCS XS XS

If s = s3in (s1,52,53) € R, we write (s1,52) € R.

pseudoterms:

T ::=&|Var|(IIVar:T.T) | (A\Var:T.T) | TT.
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(sort)

(weak)

(1)

(A)

(app)

(convg)

- £ (51 59) € A (var) 25 gy
S1 .S | S1,S & var IT U
e b INe:AFx: A

I'rA:s T'HM:C
ifx ¢ T

I'Ne:AFEM:C
I'FA:sy TI'x:AF B : so

if (81, S9, 83) ceR
I'-1Ilx:A.B : s3

I'Nec:AF-M:B T FIlx:A.B:s

' e:AM : 1lx:A.B
I'-M:1lz:AB T'THFN:A

' MN : B[N/x]
I'-M:A T'HB:s
I'-M: B

A=4 B
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Examples of PTSs

CC

S  Prop, Type
A Prop : Type
R (Prop, Prop), (Prop, Type), (Type, Prop), (Type, Type)

APREDw

S Set, Type®, Prop, Type

A Set: Type®, Prop : Type

R (Set, Set), (Set, Type), (Type, Type), (Prop, Prop),
(Set, Prop), (Type, Prop)
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AHOL

S Prop, Type, Type'
A Prop : Type, Type : Type’
R (Prop, Prop), (Type, Type), (Type, Prop)

AU

S

A Prop: Type, Type : Type'

R

Prop, Type, Type’

(Prop, Prop), (Type, Type), (Type’, Type), (Type’, Prop), (Type, Prop)

Ak

>*

A O
>
>*
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A PTS-morphism from A\(S, A, R) to \(S§", A", R) is an
f: S — &’ that preserves the axioms and rules:

o if (s1,52) € Athen (f(s1), f(s2)) € A
o if (81, S92, 83) € R then (f(Sl), f(SQ), f(83)) c R’

f extends the pseudoterms and contexts:

f ' M : Athen f(I')F f(M): f(A)
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There are now two type systems for higher order predicate logic:

APREDw and AHOL.

APREDw

S Set, Type®, Prop, Type

A Set : Type®, Prop : Type

R (Set, Set), (Set, Type), (Type, Type), (Prop, Prop),
(Set, Prop), (Type, Prop)

S Prop, Type, Type/
A Prop : Type, Type : Type’
R (Prop, Prop), (Type, Type), (Type, Prop)

They are equivalent:
The PTS-morphism A : APREDw — AHOL, given by

h(Prop) := Prop h(Set) = Type
h(Type”) := Type  h(Type’)

Type’

constitutes an isomorphism between the derivable sequents.
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What is the use of the abstract framework of PTSs?
e Present (the kernel of) systems in a uniform way
e Compare systems (e.g. AHOL, APREDw, CC) within one framework

e Prove properties for all systems at once.
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Properties of PTSs.

e Uniqueness of types
fI'-M:Aand ' M : B, then A=3B.

Holds if AC S xS and R C (S xS) xS are functions.
Definition A PTS where A and R are functions is called a functional
PTS (or singly sorted PTS).

e Subject Reduction
fI'-M:Aand M —3 N, thenI' = N : A.

e Substitution property
fI'z: BLAFM:A I'-P: B, then
I'AlP/x| - M|P/x] : A|P/x].
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Properties of PTSs ctd.

e Thinning
fTFM:Aand I' C A, A well-formed, then A+ M : A.

e Strengthening
f T, x: B,AFM:Aand xz ¢ FV(M, A, A), then
I''AEFM:A.

Strong Normalization (SN)
If I' = M : A, then all 3-reductions from M terminate.

SN holds for some PTSs, and for some not.
SN for CC is proved by a higher order extension of the saturated sets
argument (for A\2).
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Some more examples of PTSs

CC™>

S

A
R

Prop, {Typez}zelN

Prop : Type, Type, : Type,L-Jrl

(Prop, Prop), (Prop, Type;), (Type;, Prop)
(Typez'? Typej7 Typemax(i,j))

Recall that (Type;, Typey, Type,) is inconsistent (AU)
Similarly (Type; . Type;, Type;)) would be inconsistent.
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The Extended Calculus of Constructions has in addition
e Cumulativity: Prop C Type, C Type; C ..., so

' A: Prop ' A: Type,

' A: Type, I'FA: Type, 4

e ) -types:
I'A:Prop I'yz:A+ B : Prop ' A:Type, I'z:AF B : Type,
' Yx:A.B : Prop ' X2 AB : Typeaxi )
For ¢ : Prop

e We have ITA:Type,.¢ : Prop, but

e \We do not have X A:Type,.p : Prop.
Note: The type theory of Coq has in addition Set : Type and rules
(Set, Set), (Type;, Set), (Set, Prop).
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>.-types

I'-A:Type I''z:A+ B : Prop
I'=>x:A.B : Prop

leads to inconsistency:

e Define () := ¥ A:Set. X R: A— A—Prop.wf(R)
wf(R) denotes that R is well-founded. (No infinite descending
R-chains).

e Define < on (2 by
(A, R) < (B, Q) := R can be embedded into ) under some b : B

Then

— < is well-founded on {2

— If (A, R) well-founded, then (A, R) < (2, <)
so contradiction: ... < (©,<) < (2,<) < (22, <).
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Intensionality versus Extensionality
The equality in the side condition in the conv rule is intensional and

decidable. |t can also be extensional.

Extensional equality amounts to the following rules:
I'-M,N:A—-B TFp:llz:A.(Mxz = Nx)
I'-M=N:A—B
I'-P:A I'FA=B:s
I'-P:B

(ext)

(conv)

e Intensional equality of functions = equality of algorithms
(the way the function is presented to us (syntax))

e Extensional equality of functions = equality of graphs
(the (set-theoretic) meaning of the function (semantics))
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Adding the rule (ext) renders TCP undecidable:

Suppose H : (A—B)—Prop and x : (H f); then
x:(H g)iffthereisap:llz:A.fr=gx

So, to solve this TCP, we need to solve a TIP.

The interactive theorem prover Nuprl is based on extensional type theory.
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