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Types are not sets.

e Types are a bit like sets, but: ...

e types give “syntactic information”

3+ (7%8)° : nat

e sets give “semantic information”

3c{necIN|Vr,y,z€ INT (2" +y" # 2")}



Sets are about semantics:
3c{n €N |V, y,z€ INT (2" +y" # 2™}
because there are no positive x,y, z such that 2™ + y™ = 2.

e set theory talks about what things exist (semantics, ontology). A
set X such that for all sets Y with |Y| < |X|, |2Y] < | X]|?

e sets are extensional:

{neIN|3z,y,z€ NT (2" +¢y" = 2"} = {0,1,2}

e sets are “collections of things".

e membership is undecidable



Types are about syntax:
34 (7%8)° : nat

because 3, 7, 8 are of type nat and the operations take objects of type

nat to nat.

1
5220202_n . ]N

is not a typing judgment.

e type theory talks about how things can be constructed (syntax,
formal language, expressions)

e types are intensional
{n|3z,y, 2z € nat™ (2" +y"™ # 2™} # nat.{njn =0Vn =1Vn = 2}

e types are “predicates over expressions”

e typing (and type checking) is decidable



Note. The distinction between syntax and semantics is not always as

sharp as it seems.
The more we know about a model, the more we can formalize of it and

“turn it into syntax’.
We can turn

(n €N |3Jz,y,z€ NT (2" 4+ y™ = 2")}

into a (syntactic) type, with decidable type checking, if we take as its

terms pairs
(n,p) : {n € N | 3z, y, 2 € NT (2" +y" = 2")}
where p is a proof of 3z, vy, z € INT (2" + ¢y = 2"

Proof checking is decidable; proof finding not.



Overview of these lectures.

Problem: there so many type systems and so many ways of defining
them .. ..

Central theme: two readings of typing judments
M:A
e M is a term (program, expression) of the data type A
e M is a proof (derivation) of the formula A

Curry-Howard isomorphism of formulas-as-types
(and proofs-as-terms)



Overview of these lectures.

Logic TT ala AKA TT ala
Church Curry
PROP 25" Ao STT Ao
PROP2 2% A2 system F A2

Extra features!

PRED '®5° P LF st Many logics
HOL 5%  \HOL language of HOL is STT

HOL iZast CC Calc. of Constr.
PTS different PTSs for HOL




Simplest system: A— or STT. Just arrow types

Typ := TVar | (Typ—Typ)

e Examples: (a—f3)—a, (a—3)—((6—v)—(a—7))

e Brackets associate to the right and outside brackets are omitted:
(a—=pB)—=(B—7)—a—y

e Types are denoted by o, 7,....

Terms:
e typed variables x7,x9, ..., countably many for every o.
e application: if M : o—7 and N : o, then (MN): 7

e abstraction: if P: 7, then (A\z?.P) : 0—7



Examples:
A NyT.x o o—T—0
AP AP N y(22) 0 (a—B)—(B—7)—a—y
Az A\yB=N)= y (AP ) 0 a—((f—a)—a)—a

For every type there is a term of that type:
x’ 0o
Not for every type there is a closed term of that type:

(a—a)—« is not inhabited

[That is: there is no closed term of type (a—a)—a.]



Typed Terms versus Type Assignment:

e With typed terms also called typing a la Church, we have terms with
type information in the A-abstraction

A1 a—«

As a consequence:

— Terms have unique types,

— The type is directly computed from the type info in the variables.
e With typed assignment also called typing a la Curry, we assign types

to untyped A\-terms

AC.L . 00—

As a consequence:
— Terms do not have unique types,

— A principal type can be computed using unification.
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Examples:

e Typed Terms:
Az Ay PN = (2P 2))

has only the type a—((f—a)—a)—«

e Type Assignment:
AT AY.y(Az.x))
can be assigned the types
— a—((f—a)—a)—a
— a—((B—a)—y)—y
— (a—>a)—>((ﬂ—>a—>o¢)—>7)—>7

with a—((8—a)—~)—~ being the principal type



Connection between Church and Curry typed STT:

Definition The erasure map | — | from STT a la Church to STT a la
Curry is defined by erasing all type information.

(6

x| = «x
[IMN| = [M]|N|
Ax®. M| = x.|M|

So, e.g.
Az Ay P72y (NP 2)| = Az dy.y(Mz.2))

Theorem If M : o in STT a la Church, then |M|: o in STT a la Curry.

Theorem If P : o in STT a la Curry, then there is an M such that
(M| =P and M :0in STT a la Church.

12



Example of computing a principal type: 5

~
Az P yP (N7 yP )

7

Ve

3

1. Assign type vars to all variables: z : a,y: 3,2 : 7.
2. Assign type vars to all applicative subterms: yx : §, y(Az.yx) : €.

3. Generate equations between types, necessary for the term to be
typable: § = a—d B = (y—d)—e

4. Find a most general unifier (a substitution) for the type vars that
solves the equations: o :=~vy—4, [ := (y—d)—e, §:=¢

5. The principal type of Az. Ay.y(Az.yx) is now

(y—e)—=((y—e)—e)—e

Exercise: Compute principal types for S := Az \y.\z.x z(y z) and for
M = x ) \y.x(y(Az.xz2))(y(Az.x 2 2)).
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Definition

e A type substitution (or just substitution) is a map S from type
variables to types.
Note: we can compose substitutions.

e A unifier of the types o and 7 is a substitution that “makes o and 7
equal”, i.e. an S such that S(o) = S(7)

e A most general unifier (or mgu) of the types o and 7 is the “simplest
substitution” that makes ¢ and 7 equal, i.e. an S such that

— S(0) = 5(7)
— for all substitutions T" such that T'(¢) = T(7) there is a
substitution R such that 7'= Ro S.

All these notions generalize to lists of types o4,...,0, in stead of pairs

o,T.
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Theorem Computability of most general unifiers

There is an algorithm U that, when given types o4, ..., 0, outputs
e A most general unifier of 01,...,0,, if 01,...,0, can be unified.
e “Fail" if 01,...,0, can't be unified.

Definition o is a principal type for the untyped A-term M if
e M :0inSTT ala Curry

e for all types 7, if M : 7, then 7 = S(o) for some substitution S.

15



Theorem Principal Types There is an algorithm PT that, when given an
(untyped) A-term M, outputs

e A principal type o such that M : o in STT a la Curry.

e “Fail” if M is not typable in STT a la Curry.
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Typical problems one would like to have an algorithm for:

M : 0?7 Type Checking Problem TCP
M : 7  Type Synthesis or Type Assgnment Problem TSP, TAP
70 Type Inhabitation Problem (by a closed term) TIP

For A—, all these problems are decidable,

both for the Curry style and for the Church style presentation.
Remarks:

e TCP and TSP are (usually) equivalent: To solve M N : o, one has
to solve NV :7 (and if this gives answer 7, solve M : 7—0).

e For Curry systems, TCP and TSP soon become undecidable if we go
beyond \—.

e TIP is undecidable for most extensions of A—, as it corresponds to
provability in some logic.
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In this course we will mainly focus on the Church formulation of simple

type theory:terms with type information.

Inductive definition of the terms:
e typed variables x7,x9, ..., countably many for every o.
e application: if M : o—7 and N : o, then (MN) : 7

e abstraction: if P: 7, then (A\z?.P) : o0—7

Alternative: Inductive definition of the terms in rule form:
M:0—-7 N :o P:T
o .
L .0 MN : T \e® P :o—T

Advantage: We also have a derivation tree, a proof of the fact that the

term has that type.
We can reason over derivations.
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Simple type theory a la Church.

Formulation with contexts to declare the free variables:
L1 01,2 :092y...,Tp : Op

is a context, usually denoted by I,
Derivation rules of A— (a la Church):

x:oel I'-M:0—-7I'FN:o I'Nx:oEP:T1
I'Fx:0 I'EMN 1 ' v:o.P:o—t

['=x_, M : o if there is a derivation using these rules with conclusion
I'EM:o
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Derivation rules Church vs. Curry
A— (a la Church):

r.oel I'-M:0—-17I'FN:o I'Nx:oFP:T1
I'Fx:0 I'EMN :1 I'Ar:o.P:o—T1

A— (a la Curry):
x:oel I'-M:0—-7I'FN:o I'x:oF-P:T1
I'Fx:0 I'EMN :T1 I'EAx.P:o—t

Exercise: Give a full derivation of

Az Ay y(Azyx) o (v—e)—((y—e)—e)—e

in Curry style A—
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Formulas-as-Types (Curry, Howard):
There are two readings of a judgement M : o

1. term as algorithm/program, type as specification:
M is a function of type o

2. type as a proposition, term as its proof:
M is a proof of the proposition o

e There is a one-to-one correspondence;

typable terms in A— ~ derivations in minimal proposition logic

e The judgement
T1:T1,09 :Toy... Ty :Tn M :0o

can be read as
M is a proof of o from the assumptions 71,72, ..., 7.

21



Example

=B [a]!  a—f? [a]"
B— &
T 1 N Ar:a—[—y. \y:a—LBAz:a.xz(yz)
o 5 : (a—=f—7)—(a—f)—a—y
(a—fB)—a—y
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Example

[z s a—=p—9]" [2:a]

y:a—pf)* [2: 0]

1

xz : B—y

yz : P

xz(yz) vy

1

Azia.xz(yz) @ a—y

2

Ay:a— B za.xz(yz)

(a—=p0)—a—y

Ar:a—[B—y. ) \y:a—LB.Az:axz(yz) :

(a—=B—7)—=(a

Exercise: Give the derivation that corresponds to

A Ay y(Azyx) : (v—e)—((y—e)—e)—e

5)

> (Y

>y
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Computation:
e [(-reduction: (Ar:0.M)P — 45 M|[P/x]
e y-reduction: \x:o.Mx —, M if x ¢ FV(M)

24



Cut-elimination in minimal logic = (-reduction in A\—.

Do
D,
%
—
’ 1 % Dl
o—T %
-
-
x o)l
< o] o,
D,
P:o
M : T D —3
1 ’ D,
\e:o. M . o—T P:o
M|P/x]: T
(Az:o. M)P : T
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Properties of A—.

Uniqueness of types
fI'FM:0cand ' M : 7, then 0 = 7.

Subject Reduction
fI'=M:0and M —p, N, then ' N : 0.

Strong Normalization
If I' = M : o, then all Bn-reductions from M terminate.

Substitution property

f,x: 7 AFM:o, T'FP:7,then',A+ M[P/z] : 0.

Thinning
fT'FM:0and ' C A, then A+ M : 0.

Strengthening
f,x:7-M:0and x ¢ FV(M), thenT'F M : 0.
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Normalization of 3 for A—.
Note:

e Terms may get larger under reduction
(AfAzx.f(fx))P —p5 Ax.P(Px)

e Redexes may get multiplied under reduction.
(AfAz f(f2))(Ay.M)Q) —p Az.((Ay-M)Q)(((Ay.M)Q)x)

e New redexes may be created under reduction.
(Af . f(fx)(Ay.N) — 35 Ax.(Ay.N)((Ay.N)z)

First: Weak Normalization
e Weak Normalization: there is a reduction sequence that terminates,

e Strong Normalization: all reduction sequences terminate.
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Towards Weak Normalization

There are three ways in which a “new” [3-redex can be created.

e Creation

(Az....x P..)(M\y.Q) —p5 ... \y.Q)P...

e Multiplication

(Az....z...x.. )(\.Q)R) — 5 ... W.Q)R...(\y.Q)R. ..

e |dentity
(Az.2)(Ay.Q)R — 5 (A\y-Q)R

28



Towards Weak Normalization

Definition
The height (or order) of a type h(o) is defined by
e hia):=0

e h(o1—...—op,—a) :=max(h(o1),...,h(o,)) + 1.
NB [Exercise] This is the same as defining

e hic—7):=max(h(c)+ 1,h(7)).

Definition
The height of a redex (Az:0.P)Q is the height of the type of \z:0.P

29



Towards Weak Normalization

Definition
We give a measure m to the terms by defining m(N) := (h(N),#N)
with

e h(N) = the maximum height of a redex in N,

e #N = the number of redexes of height h(N) in .

The measures of terms are ordered lexicographically:

(h1,x) <; (ho,y) iff hy < hg or (hy = hy and x < y)

30



Theorem [Weak Normalization]
If P is a typable term in A—, then there is a terminating reduction

starting from P.

Proof

Pick a redex of height h(P) inside P that does not contain any other
redex of height h(P). [Note that this is always possible!]

Reduce this redex, to obtain (). This does not create a new redex of
height h(P). [This is the important step. Exercise: check this; use the
three ways in which new redexes can be created.]

So m(Q) <; m(P)

As there are no infinitely decreasing <; sequences, this process must
terminate and then we have arrived at a normal form.
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Strong Normalization for A— a la Curry
This is proved by constructing a model of A—.

Definition
e [a] := SN (the set of strongly normalizing A-terms).
o [o—7]:={M |VN € [o](MN € |[7])}.
Lemma (both by induction on o)
e [0] CSN
o If M[N/z]P € [o], N € [r], then (A\z.M)NP € [o].

Proposition

T1:Tlye - T Tn E M 0

Ny €[n], ..., N, € [14]

= M[Nl/ibl,Nn/ZEn] < [[0']]

Proof By induction on the derivation of I' = M : o.
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Proposition

T1:Tlye - T Tn B M : o

Ny € [n],...,Np € [7] = MIN /a1, .. N ] € o]

Corollary A— is SN

Proof By taking NV; := x; in the Proposition.
Of course, then we first have to show that = € [o] for all z and o.

This is a consequence of the following

Lemma
N7 ... Ny € o] for all x, 0 and Ny,..., N € SN.
Proof Induction on o.
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A little bit on semantics

A— has a simple set-theoretic model. Given sets [a] for all type
variables «, define

[o—7] := [r]') ( set theoretic function space [¢] — [r])

If any of the base sets [«] is infinite, then there are higher and higher
(uncountable) cardinalities among the o]

There are smaller models, e.g.
l[o—7] :={f € [o] — [7]|f is definable}

where definability means that it can be constructed in some formal
system. This restricts the collection to a countable set.

For example
lo—7] :={f € [o] — [7]|f is A\-definable}
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