
Introduction to Type Theory

August 2007

Types Summer School

Bertinoro, It

Herman Geuvers

Nijmegen NL

Lecture 1: Introduction, Overview, Simple Type Theory

1

Types are not sets.

• Types are a bit like sets, but: . . .

• types give “syntactic information”

3 + (7 ∗ 8)5 : nat

• sets give “semantic information”

3 ∈ {n ∈ IN | ∀x, y, z ∈ IN+(xn + yn 6= zn)}

2

Sets are about semantics:

3 ∈ {n ∈ IN | ∀x, y, z ∈ IN+(xn + yn 6= zn)}

because there are no positive x, y, z such that xn + yn = zn.

• set theory talks about what things exist (semantics, ontology). A

set X such that for all sets Y with |Y | < |X |, |2Y | < |X |?

• sets are extensional:

{n ∈ IN | ∃x, y, z ∈ IN+(xn + yn = zn)} = {0, 1, 2}

• sets are “collections of things”.

• membership is undecidable

3

Types are about syntax:

3 + (7 ∗ 8)5 : nat

because 3, 7, 8 are of type nat and the operations take objects of type

nat to nat.
1

2
Σ∞

n=02
−n : IN

is not a typing judgment.

• type theory talks about how things can be constructed (syntax,

formal language, expressions)

• types are intensional

{n|∃x, y, z ∈ nat+(xn+yn 6= zn)} 6= nat.{n|n = 0∨n = 1∨n = 2}

• types are “predicates over expressions”

• typing (and type checking) is decidable

4

Note. The distinction between syntax and semantics is not always as

sharp as it seems.

The more we know about a model, the more we can formalize of it and

“turn it into syntax”.

We can turn

{n ∈ IN | ∃x, y, z ∈ IN+(xn + yn = zn)}

into a (syntactic) type, with decidable type checking, if we take as its

terms pairs

〈n, p〉 : {n ∈ IN | ∃x, y, z ∈ IN+(xn + yn = zn)}

where p is a proof of ∃x, y, z ∈ IN+(xn + yn = zn.

Proof checking is decidable; proof finding not.

5

Overview of these lectures.

Problem: there so many type systems and so many ways of defining

them

Central theme: two readings of typing judments

M : A

• M is a term (program, expression) of the data type A

• M is a proof (derivation) of the formula A

Curry-Howard isomorphism of formulas-as-types

(and proofs-as-terms)

6

Overview of these lectures.

Logic TT a la AKA TT a la

Church Curry

PROP
f−as−t
−→ λ→ STT λ→

PROP2
f−as−t
−→ λ2 system F λ2

Extra features!

PRED
f−as−t
−→ λP LF

f−as−t
←− Many logics

HOL
f−as−t
−→ λHOL language of HOL is STT

HOL
f−as−t
−→ CC Calc. of Constr.

PTS different PTSs for HOL

7

Simplest system: λ→ or STT. Just arrow types

Typ := TVar | (Typ→Typ)

• Examples: (α→β)→α, (α→β)→((β→γ)→(α→γ))

• Brackets associate to the right and outside brackets are omitted:

(α→β)→(β→γ)→α→γ

• Types are denoted by σ, τ,

Terms:

• typed variables xσ
1 , xσ

2 , . . ., countably many for every σ.

• application: if M : σ→τ and N : σ, then (MN) : τ

• abstraction: if P : τ , then (λxσ.P) : σ→τ

8

Examples:

λxσ.λyτ .x : σ→τ→σ

λxα→β .λyβ→γ .λzα.y(xz) : (α→β)→(β→γ)→α→γ

λxα.λy(β→α)→α.y(λzβ .x) : α→((β→α)→α)→α

For every type there is a term of that type:

xσ : σ

Not for every type there is a closed term of that type:

(α→α)→α is not inhabited

[That is: there is no closed term of type (α→α)→α.]

9

Typed Terms versus Type Assignment:

• With typed terms also called typing à la Church, we have terms with

type information in the λ-abstraction

λxα.x : α→α

As a consequence:

– Terms have unique types,

– The type is directly computed from the type info in the variables.

• With typed assignment also called typing à la Curry, we assign types

to untyped λ-terms

λx.x : α→α

As a consequence:

– Terms do not have unique types,

– A principal type can be computed using unification.

10

Examples:

• Typed Terms:

λxα.λy(β→α)→α.y(λzβ .x))

has only the type α→((β→α)→α)→α

• Type Assignment:

λx.λy.y(λz.x))

can be assigned the types

– α→((β→α)→α)→α

– α→((β→α)→γ)→γ

– (α→α)→((β→α→α)→γ)→γ

– . . .

with α→((β→α)→γ)→γ being the principal type

11

Connection between Church and Curry typed STT:

Definition The erasure map | − | from STT à la Church to STT à la

Curry is defined by erasing all type information.

|xα| := x

|M N | := |M | |N |

|λxα.M | := λx.|M |

So, e.g.

|λxα.λy(β→α)→α.y(λzβ .x))| = λx.λy.y(λz.x))

Theorem If M : σ in STT à la Church, then |M | : σ in STT à la Curry.

Theorem If P : σ in STT à la Curry, then there is an M such that

|M | ≡ P and M : σ in STT à la Church.

12

Example of computing a principal type:

λxα.λyβ . yβ(λzγ .

δ
︷ ︸︸ ︷

yβxα)
︸ ︷︷ ︸

ε

1. Assign type vars to all variables: x : α, y : β, z : γ.

2. Assign type vars to all applicative subterms: y x : δ, y(λz.y x) : ε.

3. Generate equations between types, necessary for the term to be

typable: β = α→δ β = (γ→δ)→ε

4. Find a most general unifier (a substitution) for the type vars that

solves the equations: α := γ→δ, β := (γ→δ)→ε, δ := ε

5. The principal type of λx.λy.y(λz.yx) is now

(γ→ε)→((γ→ε)→ε)→ε

Exercise: Compute principal types for S := λx.λy.λz.x z(y z) and for

M := λx.λy.x(y(λz.x z z))(y(λz.x z z)).

13

Definition

• A type substitution (or just substitution) is a map S from type

variables to types.

Note: we can compose substitutions.

• A unifier of the types σ and τ is a substitution that “makes σ and τ

equal”, i.e. an S such that S(σ) = S(τ)

• A most general unifier (or mgu) of the types σ and τ is the “simplest

substitution” that makes σ and τ equal, i.e. an S such that

– S(σ) = S(τ)

– for all substitutions T such that T (σ) = T (τ) there is a

substitution R such that T = R ◦ S.

All these notions generalize to lists of types σ1, . . . , σn in stead of pairs

σ, τ .

14

Theorem Computability of most general unifiers

There is an algorithm U that, when given types σ1, . . . , σn outputs

• A most general unifier of σ1, . . . , σn, if σ1, . . . , σn can be unified.

• “Fail” if σ1, . . . , σn can’t be unified.

Definition σ is a principal type for the untyped λ-term M if

• M : σ in STT à la Curry

• for all types τ , if M : τ , then τ = S(σ) for some substitution S.

15

Theorem Principal Types There is an algorithm PT that, when given an

(untyped) λ-term M , outputs

• A principal type σ such that M : σ in STT à la Curry.

• “Fail” if M is not typable in STT à la Curry.

16

Typical problems one would like to have an algorithm for:

M : σ? Type Checking Problem TCP

M : ? Type Synthesis or Type Assgnment Problem TSP, TAP

? : σ Type Inhabitation Problem (by a closed term) TIP

For λ→, all these problems are decidable,

both for the Curry style and for the Church style presentation.

Remarks:

• TCP and TSP are (usually) equivalent: To solve MN : σ, one has

to solve N :? (and if this gives answer τ , solve M : τ→σ).

• For Curry systems, TCP and TSP soon become undecidable if we go

beyond λ→.

• TIP is undecidable for most extensions of λ→, as it corresponds to

provability in some logic.

17

In this course we will mainly focus on the Church formulation of simple

type theory:terms with type information.

Inductive definition of the terms:

• typed variables xσ
1 , xσ

2 , . . ., countably many for every σ.

• application: if M : σ→τ and N : σ, then (MN) : τ

• abstraction: if P : τ , then (λxσ.P) : σ→τ

Alternative: Inductive definition of the terms in rule form:

xσ : σ

M : σ→τ N : σ

MN : τ

P : τ

λxσ.P : σ→τ

Advantage: We also have a derivation tree, a proof of the fact that the

term has that type.

We can reason over derivations.

18

Simple type theory a la Church.

Formulation with contexts to declare the free variables:

x1 : σ1, x2 : σ2, . . . , xn : σn

is a context, usually denoted by Γ.

Derivation rules of λ→ (à la Church):

x:σ ∈ Γ

Γ ⊢ x : σ

Γ ⊢M : σ→τ Γ ⊢ N : σ

Γ ⊢MN : τ

Γ, x:σ ⊢ P : τ

Γ ⊢ λx:σ.P : σ→τ

Γ ⊢λ→ M : σ if there is a derivation using these rules with conclusion

Γ ⊢M : σ

19

Derivation rules Church vs. Curry

λ→ (à la Church):

x:σ ∈ Γ

Γ ⊢ x : σ

Γ ⊢M : σ→τ Γ ⊢ N : σ

Γ ⊢MN : τ

Γ, x:σ ⊢ P : τ

Γ ⊢ λx:σ.P : σ→τ

λ→ (à la Curry):

x:σ ∈ Γ

Γ ⊢ x : σ

Γ ⊢M : σ→τ Γ ⊢ N : σ

Γ ⊢MN : τ

Γ, x:σ ⊢ P : τ

Γ ⊢ λx.P : σ→τ

Exercise: Give a full derivation of

⊢ λx.λy.y(λz.y x) : (γ→ε)→((γ→ε)→ε)→ε

in Curry style λ→

20

Formulas-as-Types (Curry, Howard):

There are two readings of a judgement M : σ

1. term as algorithm/program, type as specification:

M is a function of type σ

2. type as a proposition, term as its proof:

M is a proof of the proposition σ

• There is a one-to-one correspondence:

typable terms in λ→ ≃ derivations in minimal proposition logic

• The judgement

x1 : τ1, x2 : τ2, . . . , xn : τn ⊢M : σ

can be read as

M is a proof of σ from the assumptions τ1, τ2, . . . , τn.

21

Example

[α→β→γ]3 [α]1

β→γ

[α→β]2 [α]1

β

γ
1

α→γ
2

(α→β)→α→γ
3

(α→β→γ)→(α→β)→α→γ

≃
λx:α→β→γ.λy:α→β.λz:α.xz(yz)

: (α→β→γ)→(α→β)→α→γ

22

Example

[x : α→β→γ]3 [z : α]1

xz : β→γ

[y : α→β]2 [z : α]1

yz : β

xz(yz) : γ
1

λz:α.xz(yz) : α→γ
2

λy:α→β.λz:α.xz(yz) : (α→β)→α→γ
3

λx:α→β→γ.λy:α→β.λz:α.xz(yz) : (α→β→γ)→(α→β)→α→γ

Exercise: Give the derivation that corresponds to

λx.λy.y(λz.y x) : (γ→ε)→((γ→ε)→ε)→ε

23

Computation:

• β-reduction: (λx:σ.M)P −→β M [P/x]

• η-reduction: λx:σ.Mx −→η M if x /∈ FV(M)

24

Cut-elimination in minimal logic = β-reduction in λ→.

[σ]1

D1

τ
1

σ→τ

D2

σ

τ

−→

D2

σ

D1

τ

[x : σ]1

D1

M : τ
1

λx:σ.M : σ→τ

D2

P : σ

(λx:σ.M)P : τ

−→β

D2

P : σ

D1

M [P/x] : τ

25

Properties of λ→.

• Uniqueness of types

If Γ ⊢M : σ and Γ ⊢M : τ , then σ = τ .

• Subject Reduction

If Γ ⊢M : σ and M −→βη N , then Γ ⊢ N : σ.

• Strong Normalization

If Γ ⊢M : σ, then all βη-reductions from M terminate.

• Substitution property

If Γ, x : τ, ∆ ⊢M : σ, Γ ⊢ P : τ , then Γ, ∆ ⊢M [P/x] : σ.

• Thinning

If Γ ⊢M : σ and Γ ⊆ ∆, then ∆ ⊢M : σ.

• Strengthening

If Γ, x : τ ⊢M : σ and x /∈ FV(M), then Γ ⊢M : σ.

26

Normalization of β for λ→.

Note:

• Terms may get larger under reduction

(λf.λx.f(fx))P −→β λx.P (Px)

• Redexes may get multiplied under reduction.

(λf.λx.f(fx))((λy.M)Q) −→β λx.((λy.M)Q)(((λy.M)Q)x)

• New redexes may be created under reduction.

(λf.λx.f(fx))(λy.N) −→β λx.(λy.N)((λy.N)x)

First: Weak Normalization

• Weak Normalization: there is a reduction sequence that terminates,

• Strong Normalization: all reduction sequences terminate.

27

Towards Weak Normalization

There are three ways in which a “new” β-redex can be created.

• Creation

(λx. . . . x P . . .)(λy.Q) −→β . . . (λy.Q)P . . .

• Multiplication

(λx. . . . x . . . x . . .)((λy.Q)R) −→β . . . (λy.Q)R . . . (λy.Q)R . . .

• Identity

(λx.x)(λy.Q)R −→β (λy.Q)R

28

Towards Weak Normalization

Definition

The height (or order) of a type h(σ) is defined by

• h(α) := 0

• h(σ1→ . . .→σn→α) := max(h(σ1), . . . , h(σn)) + 1.

NB [Exercise] This is the same as defining

• h(σ→τ) := max(h(σ) + 1, h(τ)).

Definition

The height of a redex (λx:σ.P)Q is the height of the type of λx:σ.P

29

Towards Weak Normalization

Definition

We give a measure m to the terms by defining m(N) := (h(N), #N)

with

• h(N) = the maximum height of a redex in N ,

• #N = the number of redexes of height h(N) in N .

The measures of terms are ordered lexicographically:

(h1, x) <l (h2, y) iff h1 < h2 or (h1 = h2 and x < y)

.

30

Theorem [Weak Normalization]

If P is a typable term in λ→, then there is a terminating reduction

starting from P .

Proof

Pick a redex of height h(P) inside P that does not contain any other

redex of height h(P). [Note that this is always possible!]

Reduce this redex, to obtain Q. This does not create a new redex of

height h(P). [This is the important step. Exercise: check this; use the

three ways in which new redexes can be created.]

So m(Q) <l m(P)

As there are no infinitely decreasing <l sequences, this process must

terminate and then we have arrived at a normal form.

31

Strong Normalization for λ→ à la Curry

This is proved by constructing a model of λ→.

Definition

• [[α]] := SN (the set of strongly normalizing λ-terms).

• [[σ→τ]] := {M | ∀N ∈ [[σ]](MN ∈ [[τ]])}.

Lemma (both by induction on σ)

• [[σ]] ⊆ SN

• If M [N/x]~P ∈ [[σ]], N ∈ [[τ]], then (λx.M)N ~P ∈ [[σ]].

Proposition

x1:τ1, . . . , xn:τn ⊢M : σ

N1 ∈ [[τ1]], . . . , Nn ∈ [[τn]]






⇒M [N1/x1, . . .Nn/xn] ∈ [[σ]]

Proof By induction on the derivation of Γ ⊢M : σ.

32

Proposition

x1:τ1, . . . , xn:τn ⊢M : σ

N1 ∈ [[τ1]], . . . , Nn ∈ [[τn]]






⇒M [N1/x1, . . .Nn/xn] ∈ [[σ]]

Corollary λ→ is SN

Proof By taking Ni := xi in the Proposition.

Of course, then we first have to show that x ∈ [[σ]] for all x and σ.

This is a consequence of the following

Lemma

xN1 . . .Nk ∈ [[σ]] for all x, σ and N1, . . . , Nk ∈ SN.

Proof Induction on σ.

33

A little bit on semantics

λ→ has a simple set-theoretic model. Given sets [[α]] for all type

variables α, define

[[σ→τ]] := [[τ]][[σ]] (set theoretic function space [[σ]]→ [[τ]])

If any of the base sets [[α]] is infinite, then there are higher and higher

(uncountable) cardinalities among the [[σ]]

There are smaller models, e.g.

[[σ→τ]] := {f ∈ [[σ]]→ [[τ]]|f is definable}

where definability means that it can be constructed in some formal

system. This restricts the collection to a countable set.

For example

[[σ→τ]] := {f ∈ [[σ]]→ [[τ]]|f is λ-definable}

34

