Introduction to Type Theory
August 2007
Types Summer School
Bertinoro, It

Herman Geuvers
Nijmegen NL

Lecture 1: Introduction, Overview, Simple Type Theory

Types are not sets.

e Types are a bit like sets, but: ...

e types give “syntactic information”

3+ (7%8)° : nat

e sets give “semantic information”

3c{necIN|Vr,y,z€ INT (2" +y" # 2")}

Sets are about semantics:
3c{n €N |V, y,z€ INT (2" +y" # 2™}
because there are no positive x,y, z such that 2™ + y™ = 2.

e set theory talks about what things exist (semantics, ontology). A
set X such that for all sets Y with |Y| < |X|, |2Y] < | X]|?

e sets are extensional:

{neIN|3z,y,z€ NT (2" +¢y" = 2"} = {0,1,2}

e sets are “collections of things".

e membership is undecidable

Types are about syntax:
34 (7%8)° : nat

because 3, 7, 8 are of type nat and the operations take objects of type

nat to nat.

1
5220202_n .]N

is not a typing judgment.

e type theory talks about how things can be constructed (syntax,
formal language, expressions)

e types are intensional
{n|3z,y, 2z € nat™ (2" +y"™ # 2™} # nat.{njn =0Vn =1Vn = 2}

e types are “predicates over expressions”

e typing (and type checking) is decidable

Note. The distinction between syntax and semantics is not always as

sharp as it seems.
The more we know about a model, the more we can formalize of it and

“turn it into syntax’.
We can turn

(n €N |3Jz,y,z€ NT (2" 4+ y™ = 2")}

into a (syntactic) type, with decidable type checking, if we take as its

terms pairs
(n,p) : {n € N | 3z, y, 2 € NT (2" +y" = 2")}
where p is a proof of 3z, vy, z € INT (2" + ¢y = 2"

Proof checking is decidable; proof finding not.

Overview of these lectures.

Problem: there so many type systems and so many ways of defining
them

Central theme: two readings of typing judments
M:A
e M is a term (program, expression) of the data type A
e M is a proof (derivation) of the formula A

Curry-Howard isomorphism of formulas-as-types
(and proofs-as-terms)

Overview of these lectures.

Logic TT ala AKA TT ala
Church Curry
PROP 25" Ao STT Ao
PROP2 2% A2 system F A2

Extra features!

PRED '®5° P LF st Many logics
HOL 5% \HOL language of HOL is STT

HOL iZast CC Calc. of Constr.
PTS different PTSs for HOL

Simplest system: A— or STT. Just arrow types

Typ := TVar | (Typ—Typ)

e Examples: (a—f3)—a, (a—3)—((6—v)—(a—7))

e Brackets associate to the right and outside brackets are omitted:
(a—=pB)—=(B—7)—a—y

e Types are denoted by o, 7,....

Terms:
e typed variables x7,x9, ..., countably many for every o.
e application: if M : o—7 and N : o, then (MN): 7

e abstraction: if P: 7, then (A\z?.P) : 0—7

Examples:
A NyT.x o o—T—0
AP AP N y(22) 0 (a—B)—(B—7)—a—y
Az A\yB=N)= y (AP) 0 a—((f—a)—a)—a

For every type there is a term of that type:
x’ 0o
Not for every type there is a closed term of that type:

(a—a)—« is not inhabited

[That is: there is no closed term of type (a—a)—a.]

Typed Terms versus Type Assignment:

e With typed terms also called typing a la Church, we have terms with
type information in the A-abstraction

A1 a—«

As a consequence:

— Terms have unique types,

— The type is directly computed from the type info in the variables.
e With typed assignment also called typing a la Curry, we assign types

to untyped A\-terms

AC.L . 00—

As a consequence:
— Terms do not have unique types,

— A principal type can be computed using unification.

10

Examples:

e Typed Terms:
Az Ay PN = (2P 2))

has only the type a—((f—a)—a)—«

e Type Assignment:
AT AY.y(Az.x))
can be assigned the types
— a—((f—a)—a)—a
— a—((B—a)—y)—y
— (a—>a)—>((ﬂ—>a—>o¢)—>7)—>7

with a—((8—a)—~)—~ being the principal type

Connection between Church and Curry typed STT:

Definition The erasure map | — | from STT a la Church to STT a la
Curry is defined by erasing all type information.

(6

x| = «x
[IMN| = [M]|N|
Ax®. M| = x.|M|

So, e.g.
Az Ay P72y (NP 2)| = Az dy.y(Mz.2))

Theorem If M : o in STT a la Church, then |M|: o in STT a la Curry.

Theorem If P : o in STT a la Curry, then there is an M such that
(M| =P and M :0in STT a la Church.

12

Example of computing a principal type: 5

~
Az P yP (N7 yP)

7

Ve

3

1. Assign type vars to all variables: z : a,y: 3,2 : 7.
2. Assign type vars to all applicative subterms: yx : §, y(Az.yx) : €.

3. Generate equations between types, necessary for the term to be
typable: § = a—d B = (y—d)—e

4. Find a most general unifier (a substitution) for the type vars that
solves the equations: o :=~vy—4, [:= (y—d)—e, §:=¢

5. The principal type of Az. Ay.y(Az.yx) is now

(y—e)—=((y—e)—e)—e

Exercise: Compute principal types for S := Az \y.\z.x z(y z) and for
M = x) \y.x(y(Az.xz2))(y(Az.x 2 2)).

13

Definition

e A type substitution (or just substitution) is a map S from type
variables to types.
Note: we can compose substitutions.

e A unifier of the types o and 7 is a substitution that “makes o and 7
equal”, i.e. an S such that S(o) = S(7)

e A most general unifier (or mgu) of the types o and 7 is the “simplest
substitution” that makes ¢ and 7 equal, i.e. an S such that

— S(0) = 5(7)
— for all substitutions T" such that T'(¢) = T(7) there is a
substitution R such that 7'= Ro S.

All these notions generalize to lists of types o4,...,0, in stead of pairs

o,T.

14

Theorem Computability of most general unifiers

There is an algorithm U that, when given types o4, ..., 0, outputs
e A most general unifier of 01,...,0,, if 01,...,0, can be unified.
e “Fail" if 01,...,0, can't be unified.

Definition o is a principal type for the untyped A-term M if
e M :0inSTT ala Curry

e for all types 7, if M : 7, then 7 = S(o) for some substitution S.

15

Theorem Principal Types There is an algorithm PT that, when given an
(untyped) A-term M, outputs

e A principal type o such that M : o in STT a la Curry.

e “Fail” if M is not typable in STT a la Curry.

16

Typical problems one would like to have an algorithm for:

M : 0?7 Type Checking Problem TCP
M : 7 Type Synthesis or Type Assgnment Problem TSP, TAP
70 Type Inhabitation Problem (by a closed term) TIP

For A—, all these problems are decidable,

both for the Curry style and for the Church style presentation.
Remarks:

e TCP and TSP are (usually) equivalent: To solve M N : o, one has
to solve NV :7 (and if this gives answer 7, solve M : 7—0).

e For Curry systems, TCP and TSP soon become undecidable if we go
beyond \—.

e TIP is undecidable for most extensions of A—, as it corresponds to
provability in some logic.

17

In this course we will mainly focus on the Church formulation of simple

type theory:terms with type information.

Inductive definition of the terms:
e typed variables x7,x9, ..., countably many for every o.
e application: if M : o—7 and N : o, then (MN) : 7

e abstraction: if P: 7, then (A\z?.P) : o0—7

Alternative: Inductive definition of the terms in rule form:
M:0—-7 N :o P:T
o .
L .0 MN : T \e® P :o—T

Advantage: We also have a derivation tree, a proof of the fact that the

term has that type.
We can reason over derivations.

18

Simple type theory a la Church.

Formulation with contexts to declare the free variables:
L1 01,2 :092y...,Tp : Op

is a context, usually denoted by I,
Derivation rules of A— (a la Church):

x:oel I'-M:0—-7I'FN:o I'Nx:oEP:T1
I'Fx:0 I'EMN 1 ' v:o.P:o—t

['=x_, M : o if there is a derivation using these rules with conclusion
I'EM:o

19

Derivation rules Church vs. Curry
A— (a la Church):

r.oel I'-M:0—-17I'FN:o I'Nx:oFP:T1
I'Fx:0 I'EMN :1 I'Ar:o.P:o—T1

A— (a la Curry):
x:oel I'-M:0—-7I'FN:o I'x:oF-P:T1
I'Fx:0 I'EMN :T1 I'EAx.P:o—t

Exercise: Give a full derivation of

Az Ay y(Azyx) o (v—e)—((y—e)—e)—e

in Curry style A—

20

Formulas-as-Types (Curry, Howard):
There are two readings of a judgement M : o

1. term as algorithm/program, type as specification:
M is a function of type o

2. type as a proposition, term as its proof:
M is a proof of the proposition o

e There is a one-to-one correspondence;

typable terms in A— ~ derivations in minimal proposition logic

e The judgement
T1:T1,09 :Toy... Ty :Tn M :0o

can be read as
M is a proof of o from the assumptions 71,72, ..., 7.

21

Example

=B [a]! a—f? [a]"
B— &
T 1 N Ar:a—[—y. \y:a—LBAz:a.xz(yz)
o 5 : (a—=f—7)—(a—f)—a—y
(a—fB)—a—y

22

Example

[z s a—=p—9]" [2:a]

y:a—pf)* [2: 0]

1

xz : B—y

yz : P

xz(yz) vy

1

Azia.xz(yz) @ a—y

2

Ay:a— B za.xz(yz)

(a—=p0)—a—y

Ar:a—[B—y.) \y:a—LB.Az:axz(yz) :

(a—=B—7)—=(a

Exercise: Give the derivation that corresponds to

A Ay y(Azyx) : (v—e)—((y—e)—e)—e

5)

> (Y

>y

23

Computation:
e [(-reduction: (Ar:0.M)P — 45 M|[P/x]
e y-reduction: \x:o.Mx —, M if x ¢ FV(M)

24

Cut-elimination in minimal logic = (-reduction in A\—.

Do
D,
%
—
’ 1 % Dl
o—T %
-
-
x o)l
< o] o,
D,
P:o
M : T D —3
1 ’ D,
\e:o. M . o—T P:o
M|P/x]: T
(Az:o. M)P : T

25

Properties of A—.

Uniqueness of types
fI'FM:0cand ' M : 7, then 0 = 7.

Subject Reduction
fI'=M:0and M —p, N, then ' N : 0.

Strong Normalization
If I' = M : o, then all Bn-reductions from M terminate.

Substitution property

f,x: 7 AFM:o, T'FP:7,then',A+ M[P/z] : 0.

Thinning
fT'FM:0and ' C A, then A+ M : 0.

Strengthening
f,x:7-M:0and x ¢ FV(M), thenT'F M : 0.

26

Normalization of 3 for A—.
Note:

e Terms may get larger under reduction
(AfAzx.f(fx))P —p5 Ax.P(Px)

e Redexes may get multiplied under reduction.
(AfAz f(f2))(Ay.M)Q) —p Az.((Ay-M)Q)(((Ay.M)Q)x)

e New redexes may be created under reduction.
(Af . f(fx)(Ay.N) — 35 Ax.(Ay.N)((Ay.N)z)

First: Weak Normalization
e Weak Normalization: there is a reduction sequence that terminates,

e Strong Normalization: all reduction sequences terminate.

27

Towards Weak Normalization

There are three ways in which a “new” [3-redex can be created.

e Creation

(Az....x P..)(M\y.Q) —p5 ... \y.Q)P...

e Multiplication

(Az....z...x..)(\.Q)R) — 5 ... W.Q)R...(\y.Q)R. ..

e |dentity
(Az.2)(Ay.Q)R — 5 (A\y-Q)R

28

Towards Weak Normalization

Definition
The height (or order) of a type h(o) is defined by
e hia):=0

e h(o1—...—op,—a) :=max(h(o1),...,h(o,)) + 1.
NB [Exercise] This is the same as defining

e hic—7):=max(h(c)+ 1,h(7)).

Definition
The height of a redex (Az:0.P)Q is the height of the type of \z:0.P

29

Towards Weak Normalization

Definition
We give a measure m to the terms by defining m(N) := (h(N),#N)
with

e h(N) = the maximum height of a redex in N,

e #N = the number of redexes of height h(N) in .

The measures of terms are ordered lexicographically:

(h1,x) <; (ho,y) iff hy < hg or (hy = hy and x < y)

30

Theorem [Weak Normalization]
If P is a typable term in A—, then there is a terminating reduction

starting from P.

Proof

Pick a redex of height h(P) inside P that does not contain any other
redex of height h(P). [Note that this is always possible!]

Reduce this redex, to obtain (). This does not create a new redex of
height h(P). [This is the important step. Exercise: check this; use the
three ways in which new redexes can be created.]

So m(Q) <; m(P)

As there are no infinitely decreasing <; sequences, this process must
terminate and then we have arrived at a normal form.

31

Strong Normalization for A— a la Curry
This is proved by constructing a model of A—.

Definition
e [a] := SN (the set of strongly normalizing A-terms).
o [o—7]:={M |VN € [o](MN € |[7])}.
Lemma (both by induction on o)
e [0] CSN
o If M[N/z]P € [o], N € [r], then (A\z.M)NP € [o].

Proposition

T1:Tlye - T Tn E M 0

Ny €[n], ..., N, € [14]

= M[Nl/ibl,Nn/ZEn] < [[0']]

Proof By induction on the derivation of I' = M : o.

32

Proposition

T1:Tlye - T Tn B M : o

Ny € [n],...,Np € [7] = MIN /a1, .. N] € o]

Corollary A— is SN

Proof By taking NV; := x; in the Proposition.
Of course, then we first have to show that = € [o] for all z and o.

This is a consequence of the following

Lemma
N7 ... Ny € o] for all x, 0 and Ny,..., N € SN.
Proof Induction on o.

33

A little bit on semantics

A— has a simple set-theoretic model. Given sets [a] for all type
variables «, define

[o—7] := [r]') (set theoretic function space [¢] — [r])

If any of the base sets [«] is infinite, then there are higher and higher
(uncountable) cardinalities among the o]

There are smaller models, e.g.
l[o—7] :={f € [o] — [7]|f is definable}

where definability means that it can be constructed in some formal
system. This restricts the collection to a countable set.

For example
lo—7] :={f € [o] — [7]|f is A\-definable}

34

