Introduction to Type Theory August 2007 Types Summer School Bertinoro, It

Herman Geuvers
Nijmegen NL

Lecture 1: Introduction, Overview, Simple Type Theory

Types are not sets.

- Types are a bit like sets, but: ...
- types give "syntactic information"

$$
3+(7 * 8)^{5}: \text { nat }
$$

- sets give "semantic information"

$$
3 \in\left\{n \in \mathbb{N} \mid \forall x, y, z \in \mathbb{N}^{+}\left(x^{n}+y^{n} \neq z^{n}\right)\right\}
$$

Sets are about semantics:

$$
3 \in\left\{n \in \mathbb{N} \mid \forall x, y, z \in \mathbb{N}^{+}\left(x^{n}+y^{n} \neq z^{n}\right)\right\}
$$

because there are no positive x, y, z such that $x^{n}+y^{n}=z^{n}$.

- set theory talks about what things exist (semantics, ontology). A set X such that for all sets Y with $|Y|<|X|,\left|2^{Y}\right|<|X|$?
- sets are extensional:

$$
\left\{n \in \mathbb{N} \mid \exists x, y, z \in \mathbb{N}^{+}\left(x^{n}+y^{n}=z^{n}\right)\right\}=\{0,1,2\}
$$

- sets are "collections of things".
- membership is undecidable

Types are about syntax:

$$
3+(7 * 8)^{5}: \text { nat }
$$

because $3,7,8$ are of type nat and the operations take objects of type nat to nat.

$$
\frac{1}{2} \Sigma_{n=0}^{\infty} 2^{-n}: \mathbb{N}
$$

is not a typing judgment.

- type theory talks about how things can be constructed (syntax, formal language, expressions)
- types are intensional

$$
\left\{n \mid \exists x, y, z \in \operatorname{nat}^{+}\left(x^{n}+y^{n} \neq z^{n}\right)\right\} \neq \text { nat. }\{n \mid n=0 \vee n=1 \vee n=2\}
$$

- types are "predicates over expressions"
- typing (and type checking) is decidable

Note. The distinction between syntax and semantics is not always as sharp as it seems.
The more we know about a model, the more we can formalize of it and "turn it into syntax".
We can turn

$$
\left\{n \in \mathbb{N} \mid \exists x, y, z \in \mathbb{N}^{+}\left(x^{n}+y^{n}=z^{n}\right)\right\}
$$

into a (syntactic) type, with decidable type checking, if we take as its terms pairs

$$
\langle n, p\rangle:\left\{n \in \mathbb{N} \mid \exists x, y, z \in \mathbb{N}^{+}\left(x^{n}+y^{n}=z^{n}\right)\right\}
$$

where p is a proof of $\exists x, y, z \in \mathbb{N}^{+}\left(x^{n}+y^{n}=z^{n}\right.$.
Proof checking is decidable; proof finding not.

Overview of these lectures.
Problem: there so many type systems and so many ways of defining them

Central theme: two readings of typing judments

$$
M: A
$$

- M is a term (program, expression) of the data type A
- M is a proof (derivation) of the formula A

Curry-Howard isomorphism of formulas-as-types (and proofs-as-terms)

Overview of these lectures.

Logic	TT a la	AKA	TT a la
		Church	
Curry			
PROP	$\xrightarrow{\text { f-as-t }}$	$\lambda \rightarrow$	STT
PROP2	$\xrightarrow{f-\text { as-t }}$	$\lambda 2$	system F

Extra features!

PRED	$\xrightarrow{\mathrm{f}-\mathrm{as}-\mathrm{t}}$	$\lambda \mathrm{P}$	LF	$\stackrel{\mathrm{f}-\mathrm{as}-\mathrm{t}}{\leftrightarrows}$	Many logics
HOL	$\xrightarrow{\mathrm{f}-\mathrm{as}-\mathrm{t}}$	$\lambda \mathrm{HOL}$			language of HOL is STT
HOL	$\xrightarrow{\mathrm{f}-\mathrm{as}-\mathrm{t}}$	CC	Calc. of Constr.		
		PTS			different PTSs for HOL

Simplest system: $\lambda \rightarrow$ or STT. Just arrow types

$$
\text { Typ }:=\operatorname{TVar} \mid(\text { Typ } \rightarrow \text { Typ })
$$

- Examples: $(\alpha \rightarrow \beta) \rightarrow \alpha,(\alpha \rightarrow \beta) \rightarrow((\beta \rightarrow \gamma) \rightarrow(\alpha \rightarrow \gamma))$
- Brackets associate to the right and outside brackets are omitted: $(\alpha \rightarrow \beta) \rightarrow(\beta \rightarrow \gamma) \rightarrow \alpha \rightarrow \gamma$
- Types are denoted by σ, τ, \ldots.

Terms:

- typed variables $x_{1}^{\sigma}, x_{2}^{\sigma}, \ldots$, countably many for every σ.
- application: if $M: \sigma \rightarrow \tau$ and $N: \sigma$, then $(M N): \tau$
- abstraction: if $P: \tau$, then $\left(\lambda x^{\sigma} . P\right): \sigma \rightarrow \tau$

Examples:

$$
\begin{aligned}
\lambda x^{\sigma} \cdot \lambda y^{\tau} \cdot x & : \quad \sigma \rightarrow \tau \rightarrow \sigma \\
\lambda x^{\alpha \rightarrow \beta} \cdot \lambda y^{\beta \rightarrow \gamma} \cdot \lambda z^{\alpha} \cdot y(x z) & : \quad(\alpha \rightarrow \beta) \rightarrow(\beta \rightarrow \gamma) \rightarrow \alpha \rightarrow \gamma \\
\lambda x^{\alpha} \cdot \lambda y^{(\beta \rightarrow \alpha) \rightarrow \alpha} \cdot y\left(\lambda z^{\beta} \cdot x\right) & : \quad \alpha \rightarrow((\beta \rightarrow \alpha) \rightarrow \alpha) \rightarrow \alpha
\end{aligned}
$$

For every type there is a term of that type:

$$
x^{\sigma}: \sigma
$$

Not for every type there is a closed term of that type:

$$
(\alpha \rightarrow \alpha) \rightarrow \alpha \text { is not inhabited }
$$

[That is: there is no closed term of type $(\alpha \rightarrow \alpha) \rightarrow \alpha$.]

Typed Terms versus Type Assignment:

- With typed terms also called typing à la Church, we have terms with type information in the λ-abstraction

$$
\lambda x^{\alpha} \cdot x: \alpha \rightarrow \alpha
$$

As a consequence:

- Terms have unique types,
- The type is directly computed from the type info in the variables.
- With typed assignment also called typing à la Curry, we assign types to untyped λ-terms

$$
\lambda x . x: \alpha \rightarrow \alpha
$$

As a consequence:

- Terms do not have unique types,
- A principal type can be computed using unification.

Examples:

- Typed Terms:

$$
\left.\lambda x^{\alpha} \cdot \lambda y^{(\beta \rightarrow \alpha) \rightarrow \alpha} \cdot y\left(\lambda z^{\beta} \cdot x\right)\right)
$$

has only the type $\alpha \rightarrow((\beta \rightarrow \alpha) \rightarrow \alpha) \rightarrow \alpha$

- Type Assignment:

$$
\lambda x . \lambda y . y(\lambda z . x))
$$

can be assigned the types
$-\alpha \rightarrow((\beta \rightarrow \alpha) \rightarrow \alpha) \rightarrow \alpha$
$-\alpha \rightarrow((\beta \rightarrow \alpha) \rightarrow \gamma) \rightarrow \gamma$
$-(\alpha \rightarrow \alpha) \rightarrow((\beta \rightarrow \alpha \rightarrow \alpha) \rightarrow \gamma) \rightarrow \gamma$

- ...
with $\alpha \rightarrow((\beta \rightarrow \alpha) \rightarrow \gamma) \rightarrow \gamma$ being the principal type

Connection between Church and Curry typed STT:

Definition The erasure map $|-|$ from STT à la Church to STT à la Curry is defined by erasing all type information.

$$
\begin{aligned}
\left|x^{\alpha}\right| & :=x \\
|M N| & :=|M||N| \\
\left|\lambda x^{\alpha} \cdot M\right| & :=\lambda x \cdot|M|
\end{aligned}
$$

So, e.g.

$$
\left.\left.\mid \lambda x^{\alpha} \cdot \lambda y^{(\beta \rightarrow \alpha) \rightarrow \alpha} \cdot y\left(\lambda z^{\beta} \cdot x\right)\right) \mid=\lambda x \cdot \lambda y \cdot y(\lambda z \cdot x)\right)
$$

Theorem If $M: \sigma$ in STT à la Church, then $|M|: \sigma$ in STT à la Curry.
Theorem If $P: \sigma$ in STT à la Curry, then there is an M such that $|M| \equiv P$ and $M: \sigma$ in STT à la Church.

Example of computing a principal type:

$$
\begin{aligned}
& \text { a principal type: } \\
& \lambda x^{\alpha} \cdot \lambda y^{\beta} \cdot \underbrace{y^{\beta}(\lambda z^{\gamma} \cdot \overbrace{y^{\beta} x^{\alpha}}^{\delta})}_{\varepsilon}
\end{aligned}
$$

1. Assign type vars to all variables: $x: \alpha, y: \beta, z: \gamma$.
2. Assign type vars to all applicative subterms: $y x: \delta, y(\lambda z . y x): \varepsilon$.
3. Generate equations between types, necessary for the term to be typable: $\beta=\alpha \rightarrow \delta \quad \beta=(\gamma \rightarrow \delta) \rightarrow \varepsilon$
4. Find a most general unifier (a substitution) for the type vars that solves the equations: $\alpha:=\gamma \rightarrow \delta, \beta:=(\gamma \rightarrow \delta) \rightarrow \varepsilon, \delta:=\varepsilon$
5. The principal type of $\lambda x \cdot \lambda y \cdot y(\lambda z \cdot y x)$ is now

$$
(\gamma \rightarrow \varepsilon) \rightarrow((\gamma \rightarrow \varepsilon) \rightarrow \varepsilon) \rightarrow \varepsilon
$$

Exercise: Compute principal types for $\mathrm{S}:=\lambda x \cdot \lambda y \cdot \lambda z \cdot x z(y z)$ and for $M:=\lambda x \cdot \lambda y \cdot x(y(\lambda z \cdot x z z))(y(\lambda z \cdot x z z))$.

Definition

- A type substitution (or just substitution) is a map S from type variables to types.
Note: we can compose substitutions.
- A unifier of the types σ and τ is a substitution that "makes σ and τ equal", i.e. an S such that $S(\sigma)=S(\tau)$
- A most general unifier (or mgu) of the types σ and τ is the "simplest substitution" that makes σ and τ equal, i.e. an S such that
$-S(\sigma)=S(\tau)$
- for all substitutions T such that $T(\sigma)=T(\tau)$ there is a substitution R such that $T=R \circ S$.

All these notions generalize to lists of types $\sigma_{1}, \ldots, \sigma_{n}$ in stead of pairs σ, τ.

Theorem Computability of most general unifiers
There is an algorithm U that, when given types $\sigma_{1}, \ldots, \sigma_{n}$ outputs

- A most general unifier of $\sigma_{1}, \ldots, \sigma_{n}$, if $\sigma_{1}, \ldots, \sigma_{n}$ can be unified.
- "Fail" if $\sigma_{1}, \ldots, \sigma_{n}$ can't be unified.

Definition σ is a principal type for the untyped λ-term M if

- $M: \sigma$ in STT à la Curry
- for all types τ, if $M: \tau$, then $\tau=S(\sigma)$ for some substitution S.

Theorem Principal Types There is an algorithm PT that, when given an (untyped) λ-term M, outputs

- A principal type σ such that $M: \sigma$ in STT à la Curry.
- "Fail" if M is not typable in STT à la Curry.

Typical problems one would like to have an algorithm for:

$$
\begin{array}{lll}
M: \sigma ? & \text { Type Checking Problem } & \text { TCP } \\
M: ? & \text { Type Synthesis or Type Assgnment Problem } & \text { TSP, TAP } \\
?: \sigma & \text { Type Inhabitation Problem (by a closed term) } & \text { TIP }
\end{array}
$$

For $\lambda \rightarrow$, all these problems are decidable, both for the Curry style and for the Church style presentation.
Remarks:

- TCP and TSP are (usually) equivalent: To solve $M N: \sigma$, one has to solve $N:$? (and if this gives answer τ, solve $M: \tau \rightarrow \sigma$).
- For Curry systems, TCP and TSP soon become undecidable if we go beyond $\lambda \rightarrow$.
- TIP is undecidable for most extensions of $\lambda \rightarrow$, as it corresponds to provability in some logic.

In this course we will mainly focus on the Church formulation of simple type theory:terms with type information.

Inductive definition of the terms:

- typed variables $x_{1}^{\sigma}, x_{2}^{\sigma}, \ldots$, countably many for every σ.
- application: if $M: \sigma \rightarrow \tau$ and $N: \sigma$, then $(M N): \tau$
- abstraction: if $P: \tau$, then $\left(\lambda x^{\sigma} . P\right): \sigma \rightarrow \tau$

Alternative: Inductive definition of the terms in rule form:

$$
\overline{x^{\sigma}: \sigma} \quad \frac{M: \sigma \rightarrow \tau N: \sigma}{M N: \tau} \quad \frac{P: \tau}{\lambda x^{\sigma} \cdot P: \sigma \rightarrow \tau}
$$

Advantage: We also have a derivation tree, a proof of the fact that the term has that type.
We can reason over derivations.

Simple type theory a la Church.
Formulation with contexts to declare the free variables:

$$
x_{1}: \sigma_{1}, x_{2}: \sigma_{2}, \ldots, x_{n}: \sigma_{n}
$$

is a context, usually denoted by Γ.
Derivation rules of $\lambda \rightarrow$ (à la Church):

$$
\frac{x: \sigma \in \Gamma}{\Gamma \vdash x: \sigma} \quad \frac{\Gamma \vdash M: \sigma \rightarrow \tau \Gamma \vdash N: \sigma}{\Gamma \vdash M N: \tau} \quad \frac{\Gamma, x: \sigma \vdash P: \tau}{\Gamma \vdash \lambda x: \sigma \cdot P: \sigma \rightarrow \tau}
$$

$\Gamma \vdash_{\lambda \rightarrow} M: \sigma$ if there is a derivation using these rules with conclusion $\Gamma \vdash M: \sigma$

Derivation rules Church vs. Curry
$\lambda \rightarrow$ (à la Church):
$\frac{x: \sigma \in \Gamma}{\Gamma \vdash x: \sigma} \quad \frac{\Gamma \vdash M: \sigma \rightarrow \tau \Gamma \vdash N: \sigma}{\Gamma \vdash M N: \tau} \quad \frac{\Gamma, x: \sigma \vdash P: \tau}{\Gamma \vdash \lambda x: \sigma \cdot P: \sigma \rightarrow \tau}$
$\lambda \rightarrow$ (à la Curry):

$$
\frac{x: \sigma \in \Gamma}{\Gamma \vdash x: \sigma} \quad \frac{\Gamma \vdash M: \sigma \rightarrow \tau \Gamma \vdash N: \sigma}{\Gamma \vdash M N: \tau} \quad \frac{\Gamma, x: \sigma \vdash P: \tau}{\Gamma \vdash \lambda x . P: \sigma \rightarrow \tau}
$$

Exercise: Give a full derivation of

$$
\vdash \lambda x . \lambda y . y(\lambda z . y x):(\gamma \rightarrow \varepsilon) \rightarrow((\gamma \rightarrow \varepsilon) \rightarrow \varepsilon) \rightarrow \varepsilon
$$

in Curry style $\lambda \rightarrow$

Formulas-as-Types (Curry, Howard):
There are two readings of a judgement $M: \sigma$

1. term as algorithm/program, type as specification:
M is a function of type σ
2. type as a proposition, term as its proof:
M is a proof of the proposition σ

- There is a one-to-one correspondence:
typable terms in $\lambda \rightarrow \simeq$ derivations in minimal proposition logic
- The judgement

$$
x_{1}: \tau_{1}, x_{2}: \tau_{2}, \ldots, x_{n}: \tau_{n} \vdash M: \sigma
$$

can be read as
M is a proof of σ from the assumptions $\tau_{1}, \tau_{2}, \ldots, \tau_{n}$.

Example

$$
\begin{array}{cc}
\frac{[\alpha \rightarrow \beta \rightarrow \gamma]^{3}[\alpha]^{1}}{\beta \rightarrow \gamma} \frac{[\alpha \rightarrow \beta]^{2}[\alpha]^{1}}{\beta} \\
\frac{\gamma}{\frac{\gamma \rightarrow \gamma}{\alpha} 1} 2 & \simeq \quad \lambda x: \alpha \rightarrow \beta \rightarrow \gamma \cdot \lambda y: \alpha \rightarrow \beta \cdot \lambda z: \alpha \cdot x z(y z) \\
& :(\alpha \rightarrow \beta \rightarrow \gamma) \rightarrow(\alpha \rightarrow \beta) \rightarrow \alpha \rightarrow \gamma
\end{array}
$$

Example

$$
\begin{gathered}
\frac{[x: \alpha \rightarrow \beta \rightarrow \gamma]^{3}[z: \alpha]^{1}}{x z: \beta \rightarrow \gamma} \quad \frac{[y: \alpha \rightarrow \beta]^{2}[z: \alpha]^{1}}{y z: \beta} \\
\frac{x z(y z): \gamma}{\lambda z: \alpha \cdot x z(y z): \alpha \rightarrow \gamma} 1 \\
\frac{\lambda y: \alpha \rightarrow \beta \cdot \lambda z: \alpha \cdot x z(y z):(\alpha \rightarrow \beta) \rightarrow \alpha \rightarrow \gamma}{\lambda x: \alpha \rightarrow \beta \rightarrow \gamma \cdot \lambda y: \alpha \rightarrow \beta \cdot \lambda z: \alpha \cdot x z(y z):(\alpha \rightarrow \beta \rightarrow \gamma) \rightarrow(\alpha \rightarrow \beta) \rightarrow \alpha \rightarrow \gamma} 3
\end{gathered}
$$

Exercise: Give the derivation that corresponds to

$$
\lambda x \cdot \lambda y \cdot y(\lambda z . y x):(\gamma \rightarrow \varepsilon) \rightarrow((\gamma \rightarrow \varepsilon) \rightarrow \varepsilon) \rightarrow \varepsilon
$$

Computation:

- β-reduction: $(\lambda x: \sigma . M) P \longrightarrow_{\beta} M[P / x]$
- η-reduction: $\lambda x: \sigma . M x \longrightarrow_{\eta} M$ if $x \notin \mathrm{FV}(M)$

Cut-elimination in minimal logic $=\beta$-reduction in $\lambda \rightarrow$.

$$
\begin{array}{ccc}
{[\sigma]^{1}} & & \\
\mathcal{D}_{1} & & \mathcal{D}_{2} \\
\frac{\tau}{\sigma \rightarrow \tau} 1 & \frac{\mathcal{D}_{2}}{\sigma} & \\
\tau & & \sigma \\
\frac{\mathcal{D}_{1}}{} & & \tau \\
{[x: \sigma]^{1}} & & \\
\mathcal{D}_{1} & & \mathcal{D}_{2} \\
M: \tau & & P: \sigma \\
\frac{\mathcal{D}_{2}}{\lambda x: \sigma \cdot M: \sigma \rightarrow \tau} & & \\
\hline(\lambda x: \sigma \cdot M) P: \tau & & \\
\hline
\end{array}
$$

Properties of $\lambda \rightarrow$.

- Uniqueness of types

If $\Gamma \vdash M: \sigma$ and $\Gamma \vdash M: \tau$, then $\sigma=\tau$.

- Subject Reduction

If $\Gamma \vdash M: \sigma$ and $M \longrightarrow{ }_{\beta \eta} N$, then $\Gamma \vdash N: \sigma$.

- Strong Normalization

If $\Gamma \vdash M: \sigma$, then all $\beta \eta$-reductions from M terminate.

- Substitution property

If $\Gamma, x: \tau, \Delta \vdash M: \sigma, \Gamma \vdash P: \tau$, then $\Gamma, \Delta \vdash M[P / x]: \sigma$.

- Thinning

If $\Gamma \vdash M: \sigma$ and $\Gamma \subseteq \Delta$, then $\Delta \vdash M: \sigma$.

- Strengthening If $\Gamma, x: \tau \vdash M: \sigma$ and $x \notin \mathrm{FV}(M)$, then $\Gamma \vdash M: \sigma$.

Normalization of β for $\lambda \rightarrow$.

Note:

- Terms may get larger under reduction

$$
(\lambda f \cdot \lambda x \cdot f(f x)) P \longrightarrow_{\beta} \lambda x \cdot P(P x)
$$

- Redexes may get multiplied under reduction. $(\lambda f . \lambda x . f(f x))((\lambda y \cdot M) Q) \longrightarrow_{\beta} \lambda x .((\lambda y \cdot M) Q)(((\lambda y \cdot M) Q) x)$
- New redexes may be created under reduction. $(\lambda f . \lambda x . f(f x))(\lambda y . N) \longrightarrow_{\beta} \lambda x .(\lambda y . N)((\lambda y . N) x)$

First: Weak Normalization

- Weak Normalization: there is a reduction sequence that terminates,
- Strong Normalization: all reduction sequences terminate.

Towards Weak Normalization
There are three ways in which a "new" β-redex can be created.

- Creation

$$
(\lambda x \ldots x P \ldots)(\lambda y \cdot Q) \longrightarrow \beta \ldots(\lambda y \cdot Q) P \ldots
$$

- Multiplication

$$
(\lambda x \ldots x \ldots x \ldots)((\lambda y \cdot Q) R) \longrightarrow_{\beta} \ldots(\lambda y \cdot Q) R \ldots(\lambda y \cdot Q) R \ldots
$$

- Identity

$$
(\lambda x \cdot x)(\lambda y \cdot Q) R \longrightarrow_{\beta}(\lambda y \cdot Q) R
$$

Towards Weak Normalization
Definition
The height (or order) of a type $h(\sigma)$ is defined by

- $h(\alpha):=0$
- $h\left(\sigma_{1} \rightarrow \ldots \rightarrow \sigma_{n} \rightarrow \alpha\right):=\max \left(h\left(\sigma_{1}\right), \ldots, h\left(\sigma_{n}\right)\right)+1$.

NB [Exercise] This is the same as defining

- $h(\sigma \rightarrow \tau):=\max (h(\sigma)+1, h(\tau))$.

Definition

The height of a redex $(\lambda x: \sigma . P) Q$ is the height of the type of $\lambda x: \sigma . P$

Towards Weak Normalization
Definition
We give a measure m to the terms by defining $m(N):=(h(N), \# N)$ with

- $h(N)=$ the maximum height of a redex in N,
- $\# N=$ the number of redexes of height $h(N)$ in N.

The measures of terms are ordered lexicographically:

$$
\left(h_{1}, x\right)<_{l}\left(h_{2}, y\right) \text { iff } h_{1}<h_{2} \text { or }\left(h_{1}=h_{2} \text { and } x<y\right)
$$

Theorem [Weak Normalization]
If P is a typable term in $\lambda \rightarrow$, then there is a terminating reduction starting from P.

Proof

Pick a redex of height $h(P)$ inside P that does not contain any other redex of height $h(P)$. [Note that this is always possible!]
Reduce this redex, to obtain Q. This does not create a new redex of height $h(P)$. [This is the important step. Exercise: check this; use the three ways in which new redexes can be created.]
So $m(Q)<_{l} m(P)$
As there are no infinitely decreasing $<_{l}$ sequences, this process must terminate and then we have arrived at a normal form.

Strong Normalization for $\lambda \rightarrow$ à la Curry
This is proved by constructing a model of $\lambda \rightarrow$.
Definition

- $\llbracket \alpha \rrbracket:=\mathrm{SN}$ (the set of strongly normalizing λ-terms).
- $\llbracket \sigma \rightarrow \tau \rrbracket:=\{M \mid \forall N \in \llbracket \sigma \rrbracket(M N \in \llbracket \tau \rrbracket)\}$.

Lemma (both by induction on σ)

- $\llbracket \sigma \rrbracket \subseteq \mathrm{SN}$
- If $M[N / x] \vec{P} \in \llbracket \sigma \rrbracket, N \in \llbracket \tau \rrbracket$, then $(\lambda x . M) N \vec{P} \in \llbracket \sigma \rrbracket$.

Proposition

$$
\left.\begin{array}{l}
x_{1}: \tau_{1}, \ldots, x_{n}: \tau_{n} \vdash M: \sigma \\
N_{1} \in \llbracket \tau_{1} \rrbracket, \ldots, N_{n} \in \llbracket \tau_{n} \rrbracket
\end{array}\right\} \Rightarrow M\left[N_{1} / x_{1}, \ldots N_{n} / x_{n}\right] \in \llbracket \sigma \rrbracket
$$

Proof By induction on the derivation of $\Gamma \vdash M: \sigma$.

Proposition

$$
\left.\begin{array}{l}
x_{1}: \tau_{1}, \ldots, x_{n}: \tau_{n} \vdash M: \sigma \\
N_{1} \in \llbracket \tau_{1} \rrbracket, \ldots, N_{n} \in \llbracket \tau_{n} \rrbracket
\end{array}\right\} \Rightarrow M\left[N_{1} / x_{1}, \ldots N_{n} / x_{n}\right] \in \llbracket \sigma \rrbracket
$$

Corollary $\lambda \rightarrow$ is SN
Proof By taking $N_{i}:=x_{i}$ in the Proposition.
Of course, then we first have to show that $x \in \llbracket \sigma \rrbracket$ for all x and σ.

This is a consequence of the following
Lemma
$x N_{1} \ldots N_{k} \in \llbracket \sigma \rrbracket$ for all x, σ and $N_{1}, \ldots, N_{k} \in \mathrm{SN}$.
Proof Induction on σ.

A little bit on semantics

$\lambda \rightarrow$ has a simple set-theoretic model. Given sets $\llbracket \alpha \rrbracket$ for all type variables α, define

$$
\llbracket \sigma \rightarrow \tau \rrbracket:=\llbracket \tau \rrbracket \llbracket \sigma \rrbracket \text { (set theoretic function space } \llbracket \sigma \rrbracket \rightarrow \llbracket \tau \rrbracket)
$$

If any of the base sets $\llbracket \alpha \rrbracket$ is infinite, then there are higher and higher (uncountable) cardinalities among the $\llbracket \sigma \rrbracket$
There are smaller models, e.g.

$$
\llbracket \sigma \rightarrow \tau \rrbracket:=\{f \in \llbracket \sigma \rrbracket \rightarrow \llbracket \tau \rrbracket \mid f \text { is definable }\}
$$

where definability means that it can be constructed in some formal system. This restricts the collection to a countable set.

For example

$$
\llbracket \sigma \rightarrow \tau \rrbracket:=\{f \in \llbracket \sigma \rrbracket \rightarrow \llbracket \tau \rrbracket \mid f \text { is } \lambda \text {-definable }\}
$$

