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Models of Type Theory

Some proofs in λ∗

N = ΠX : ∗. X → (X → X) → X

0 = λX : ∗.λa : X.λf : X → X. a

S = λn : N.λX : ∗.λa : X.λf : X → X. f (n X f a)

N0 = ΠX : ∗. X, N1 = ΠX : ∗. X → X, ¬ X = X → N0
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Models of Type Theory

Some proofs in λ∗

Id A x y = ΠC : A → ∗. C x → C y

We can define C : N → ∗ such that C 0 = N1, C (S x) = N0

We take C n = n ∗ N1 (λX : ∗.N0)

Hence we have a proof of Πx : N. ¬ (Id N 0 (S n))
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Models of Type Theory

Interpretation of λ∗

If we have
B : U, ε : U → B, T : B → U

with T (ε A) = A then we can define

π : Πa : B.(T a → B) → B, π a F : B = ε (Πx : T a.T (F x))

such that T (π a F ) = Πx : T a.T (F x) and b : B = ε B such that T b = B
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Models of Type Theory

Interpretation of λ∗

[∗] = b, [Πx : A.B] = π [A] (λx : T [A].[B])

[λx : A.M ] = λx : [A].[M ], [N M ] = [N ] [M ], [x] = x

If M : A in λ∗ we then have [M ] : T [A]
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Models of Type Theory

Interpretation of λ∗

For instance we cannot have ΣX : U.B : U for B : U [X : U ] because we can
then define

B : U = ΣX : U.N1, ε X = (X, 0), T (X, 0) = X

with T (ε X) = X
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Models of Type Theory

Context and interpretation between contexts

One concrete example was the context

Γ = B : U, ε : U → B, T : B → U, h : ΠA : U. A ↔ T (ε A)

and the context

∆ = axC : Π : U. A + ¬A

we described an interpretation ∆ → Γ
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Models of Type Theory

Context and interpretation between contexts

In general if Γ = x1 : A1, . . . , xn : An and ∆ = y1 : B1, . . . , ym : Bm an
interpretation

(a1, . . . , an) : ∆ → Γ

will be given by n terms a1, . . . , an such that

∆ ` a1 : A1, ∆ ` a2 : A1[a1], . . . , ∆ ` an : An[a1, . . . , an−1]

If Γ ` a : A we have ∆ ` a[a1, . . . , an] : A[a1, . . . , an]

Theory and theory interpretation
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Models of Type Theory

What is a model of type theory?

Models of simple type theory: Henkin (1950) for a completeness proof for
higher-order logic

A → B is not interpreted as a set-theoretic function space

We can have models where all types are interpreted by countable sets

Trying to precise what is a model suggests new improved syntactical
presentation of the formal system

First: what is a model of simply typed lambda calculus with →,× and β, η
equality
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Models of Type Theory

Problem with defining model of lambda-calculus

General remark before starting the notion of model of type theory

If Γ ` M : A and ρ an environment we try to define [[M ]]ρ

For defining [[λx.M ]]ρ it is not enough to know the set theoretic function

a 7−→ [[M ]]ρ,x=a

For instance, for domain models, we need to know also that this function is
continuous. The same problem holds for the D-set model.
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Models of Type Theory

What is a model of type theory?

We use the theory of cartesian closed category

Types A ::= X, A×A, A ⇒ A

(f, g) : C → A×B if f : C → A, g : C → B

p : A×B → A, q : A×B → B

λ(f) : A → B ⇒ C if f : A×B → C

app : (A ⇒ B)×A → B
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Models of Type Theory

C-monoid

If we forget the types in the equations, we get the notion of C-monoid

A monoid with special constants app, p, q, operations (x, y), λ(x) and
equations

(xy)z = x(yz), x1 = 1x = x

p(x, y) = x, q(x, y) = y, (x, y)z = (xz, yz), (p, q) = 1

app(λ(x), y) = x(1, y), (λ(x))y = λ(x(yp, q)), x = λ(app(xp, q))
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Models of Type Theory

Category with families

Introduced by Peter Dybjer (1995)

Can be seen as a name free presentation of type theory

Inspired from previous work of J. Cartmell (1978) on contextual categories
and generalised algebraic theories

What is fundamental is the category of contexts

We get the same equations as for the theory of cartesian closed categories
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Models of Type Theory

What is a category?

Cartmell observed that we can give an almost equational (“generalised
algebraic”) presentation of this notion

We have a collection of objects Γ,∆, . . .

Given two objects Γ,∆ we have a collection of maps Γ → ∆ (dependent
types!)
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Models of Type Theory

What is a category?

For each object Γ we have 1 ∈ Γ → Γ

We have a composition operator σδ ∈ Θ → Γ if δ ∈ Θ → ∆ and σ ∈ ∆ → Γ.

σ 1 = 1 σ = σ, (θσ)δ = θ(σδ)
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Models of Type Theory

Syntactical remarks

The real explicit terms are first-order terms

For instance we should really write comp A B C f g instead of g f

id A instead of 1

But the shorter notations are not ambiguous
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Models of Type Theory

Category with families

If Γ ∈ Con we have a collection Type(Γ) of types over Γ.

Substitution: we have an operation that takes A ∈ Type(Γ) and σ ∈ ∆ → Γ
to Aσ ∈ Type(∆) such that the following equations hold

A 1 = A, (Aσ)δ = A(σδ)

16



Models of Type Theory

Category with families

If Γ ∈ Con and A ∈ Type(Γ) we have a collection Elem(Γ, A) of elements of
type A. We have an operation that takes u ∈ Elem(Γ, A) and σ ∈ ∆ → Γ to
uσ ∈ Elem(∆, Aσ). Furthermore the following equations hold

u 1 = u, (uσ)δ = u(σδ)
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Models of Type Theory

Category with families

We have a context extension operation: if A ∈ Type(Γ) then we have a new
context Γ.A ∈ Con. Furthermore there is a projection morphism p ∈ Γ.A → Γ
and a special element q ∈ Elem(Γ.A,A p). If σ ∈ ∆ → Γ and A ∈ Type(Γ) and
u ∈ Elem(∆, Aσ) we have also an extension operation (σ, u) ∈ ∆ → Γ.A. This
should satisfy the equations

p (σ, u) = σ, q (σ, u) = u, (σ, u)δ = (σδ, uδ), (p, q) = 1

18



Models of Type Theory

Notations

If u ∈ Elem(Γ, A) we write [u] ∈ Γ → Γ.A the substitution (1, u). Thus
if B ∈ Type(Γ.A) we have B[u] ∈ Type(Γ), and if v ∈ Elem(Γ.A,B) we have
v[u] ∈ Elem(Γ, B[u]).

If σ ∈ ∆ → Γ and A ∈ Type(Γ) we have a square diagram with p ∈ ∆.Aσ →
∆ and p ∈ Γ.A → Γ and (σp, q) ∈ ∆.Aσ → Γ.A.

This is a pullback in the category of contexts.

19



Models of Type Theory

Dependent products

We suppose furthermore one operation that takes A ∈ Type(Γ) and B ∈
Type(Γ.A) to Π A B ∈ Type(Γ). If B ∈ Type(Γ.A) and σ ∈ ∆ → Γ the
following equation should hold

(Π A B)σ = Π (Aσ) (B(σp, q))

If v ∈ Elem(Γ.A,B) we have λv ∈ Elem(Γ,Π A B). We have an application
operation: if w ∈ Elem(Γ,Π A B) and u ∈ Elem(Γ, A) then app(w, u) ∈
Elem(Γ, B[u]).
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Models of Type Theory

Dependent products

These operations should satisfy the equations

app(λv, u) = v[u], w = λ(app(w p, q))

(λv)σ = λv(σ p, q), app(w, u)σ = app(wσ, uσ)
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Models of Type Theory

Deductive system presentation

This describes what is a model of type theory with dependent product

Alternatively this can be presented in the form of inference rules with equations

These are called deductive systems in Lambek-Scott
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Models of Type Theory

Deductive system presentation

The sorts are Con and ∆ → Γ for ∆,Γ : Con and Type(Γ) for Γ : Con and
Elem(Γ, A) for Γ : Con and A : Type(Γ).

Γ : Con

1 : Γ → Γ
σ : ∆ → Γ δ : Θ → ∆

σδ : Θ → Γ

Equations:

σ 1 = 1 σ = σ where σ : ∆ → Γ

(θσ)δ = θ(σδ) where θ : Γ → Ξ , σ : ∆ → Γ, δ : Θ → ∆
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Models of Type Theory

Generalised algebraic theory

In equational logic we have a clear notion of model and maps bewteen models.
We have also a very pure form of completeness theorem which is proved by
considering the initial model = term model

All this is still valid with multi-sorted equational logic

Cartmell’s notion of generalised algebraic theory can be seen as equational
logic with dependent sorts, and keep also these properties
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Models of Type Theory

Example of models

Set theoretic model: the contexts are sets

Type(Γ) is the collection of families of sets A = (Aγ)γ∈Γ.

If σ : ∆ → Γ we define Aσ = (Aσ(δ))δ∈∆

Elem(Γ, A) is the collection of sections: family (aγ) such that aγ belongs to
Aγ for γ in Γ
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Models of Type Theory

Example of models

We have dependent product and we can check that all equations are satisfied

If A = (Aγ) in Type(Γ)

and B = (B(γ,a)) in Type(Γ.A)

we can form (Π A B)γ = (Πx ∈ Aγ)B(γ,x)
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Models of Type Theory

Example of models

Domain model: the contexts are Scott domains

Type(Γ) is the collection of families of domains A = (Aγ) the domain Γ, i.e.
a continuous functor from Γ seen as a category to the category of domains with
embedding-projection pairs as morphisms

Elem(Γ, A) is the collection of continuous sections: family (aγ) such that aγ

belongs to Aγ for γ in Γ, and which is continuous in γ

We have dependent product and we can check that all equations are satisfied
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Models of Type Theory

Operations on models

Since these models are models of an essentially algebraic theory, we can (like
in equational logic)

form the product of two models, or of a family of models

consider maps between models and the category of all models

this category has an intial model: the term model

consider inductive limits of models

This also holds for topos theory, but not for set theory
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Models of Type Theory

Impredicative universe

An impredicative universe is a type Prop with a dependent type T x [x : Prop]
and an universal quantification ∀ : (A → Prop) → Prop with two maps

in : (Πx : A.T (f x)) → T (∀ f), out : T (∀ f) → (Πx : A.T (f x))

such that out (in u) = u : Πx : A.T (f x)

The classical intuition is that the types T x of an impredicative universe have
to be small (at most one element); for instance the type

T (∀x : Prop. x ⇒ (x ⇒ x) ⇒ x)

We are now showing a model with non trivial types T x
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Models of Type Theory

The D-set model

Due to M. Hyland, E. Moggi

We start from an arbitrary combinatory algebra

A set D with a binary application operation b · a ∈ D for b, a ∈ D and two
elements k, s ∈ D such that

k · a · b = a, s · a · b · c = a · b · (a · c)
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Models of Type Theory

Combinatory algebra

D is functionally complete: if we have a term t(x1, . . . , xn) then there exists
f ∈ D such that f · x1 · · · · · xn = t(x1, . . . , xn).

We have elements π1, π2 such that π1 · a · b = a, π2 · a · b = b

We define <a, b> such that <a, b> · c = c · a · b

<a, b> · π1 = a and <a, b> · π2 = b.

π1 = π2 iff D is trivial and <a, b> = <a′, b′> iff a = a′ and b = b′
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Models of Type Theory

Combinatory algebra

One can encode the natural numbers in any combinatory algebras

dn · a · f = (f ·)n · a

Another way c0 = I such that I · x = x and

S · x = <x, π1>, c1 = <c0, π1>, c2 = <c1, π1>, . . .

Then it is possible to show that S· is injective and that

S · x 6= c0 if D is not trivial
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Models of Type Theory

Two notions of types

D should be thought of as a collection of “untyped computations”

A (small) type can be interpreted as

a subset X ⊆ D (intensional interpretation of types)

a Partial Equivalence Relation on D (extension interpretation of types)

A motivation for the second model comes from Gandy’s model of
extensionality: for representing a functional F we require f1 =N→N f2 implies
F · f1 =N F · f2 where u1 =N u2 means u1 = u2 = cn for some n ∈ N
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Models of Type Theory

The category of D-sets

A D-set is a pair X, 
X where X is a(n arbitrary) set and d 
X x a relation
between D and X such that for each x in X there exists (at least) one d such
that d 
X x

A map (X, 
X) → (Y, 
Y ) is a set-theoretic function f : X → Y such that
there exists d in D such that if a 
 x then d · a 
 f(x)

So a map is a set-theoretic function f : X → Y satisfying some conditions
(like in domain theory, where the condition is that of being continuous)
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Models of Type Theory

The category of D-sets

The category of D-sets is cartesian closed

If A = (X, 
X), B = (Y, 
Y ) then A ⇒ B is (A → B,
) where d 
 f iff
a 
 x implies d · a 
 f(x)

A×B is (X × Y, 
) where d 
 (x, y) iff d = <a, b> with a 
 x and b 
 y
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Models of Type Theory

Natural number object

We can define dn such that dn · f · a = (f ·)na

We define Nat = N,
 with d 
 n iff d · f · a = (f ·)na. In particular dn 
 n

We have a map S : Nat → Nat since there exists s in D such that s ·d ·f ·a =
f · (d · f · a)

Given A = X, 
 and v : A → A and x ∈ X there is a unique map u : Nat → A
such that u 0 = x and u S = v u. We must have u n = fn x, and if f 
 v, a 
 x
we have d · f · a 
 u n if d 
 n
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Models of Type Theory

Family of D-sets

Given Γ = (X, 
) an element of Type(Γ) is a family A = (Yx,
x) of D-sets
over X

An element of Elem(Γ, A) is a family bx ∈ Yx such that there exists d in D
such that d · a 
x bx whenever a 
 x

We define Γ.A to be the D-set Σx∈XYx,
 where d 
 (x, y) iff d · π1 
 x and
d · π2 
 y
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Models of Type Theory

Family of D-sets

An alternative definition, not equivalent a priori in general, is to define Γ.A
to be the D-set Σx∈XYx,
 where d 
 (x, y) iff there exist d1, d2 such that
d = <d1, d2> and d1 
 x and d2 
 y

The two possible D-sets are isomorphic in the category of D-sets, so this
choice does not actually matter
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Models of Type Theory

Modest sets

A D-set X, 
 is modest iff d 
 x1 ∧ d 
 x2 implies x1 = x2 in X

For instance Nat is modest if D is not trivial

Proposition: If B in Type(Γ.A) is a family of modest sets then Π A B in
Type(Γ) is a family of modest sets

Proposition: If B in Type(Γ.A) is a family of modest sets and A ∈ Type(Γ)
is a family of modest set then Σ A B in Type(Γ) is a family of modest sets
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Models of Type Theory

Large sets

If X is a set we write ∆(X) the D-set X, 
 with d 
 x for all d in D and x
in X

Any set theoretic map f : X → Y is also a map f : ∆(X) → ∆(Y )

Proposition: If A is large and B is modest then any map A → B is constant

Notice that Nat is not ∆(N)
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Models of Type Theory

Modest sets

Proposition: If A = (X, 
) is a modest set then the relation

∃x ∈ X.d1 
 x ∧ d2 
 x

is a symmetric and transitive relation

We let PER(D) be the set of symmetric and transitive relations on D. If R
in PER(D) we write [R] the set of equivalence class of R

If R is in PER(D) then T (R) is the modest set [R],
 where d 
 x iff d is in
the equivalence class x
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Models of Type Theory

An impredicative universe

Prop is then the object ∆(PER(D))

If f : A → Prop then T ◦ f is a family of modest sets over A and Π A (T ◦ f)
is a modest set

We can define ∀f = [Π A (T ◦ f)]

If R,S are PERs we define R ⇒ S = [T R → T S]

We have d1 (R ⇒ S) d2 iff a1 R a2 implies d1 · a1 S d2 · a2
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Models of Type Theory

Products and intersections

Let A be the D-set ∆(X) where X is an arbitrary set

Let Rx be a family in PER(D)

Let B be the family of modest sets T (Rx) for x ∈ X

Theorem: The D-set Π A B is isomorphic to the D-set T (
⋂

x∈X Rx)
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Models of Type Theory

Second application

We get the (relative) consistency of the type theory with an impredicative
universe with a small type of natural numbers with large eliminations

It can be shown that such a type theory contradicts classical logic

Indeed we can check that the type

ΠA : Prop. ¬¬A → A

is empty in the D-set model
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Models of Type Theory

Encoding of Booleans

In impredicative type theory, one considers the type of Booleans

B = ΠX : Prop.X → X → X

What is this type in the D-set model?
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Models of Type Theory

Example of models

Truth-value model: the category of contexts is the poset {0, 1}

Type(0) = Type(1) = {0, 1}

Elem(Γ, A) = {0} if Γ ≤ A

Elem(Γ, A) = ∅ if A = 0, Γ = 1

We can define Γ.A = Γ ∧A and we have dependent products

In this model any inhabited type has at most one element

This model supports (intensional) identity types
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Models of Type Theory

First application

Proposition: It is impossible to show

¬Id 0 (S 0)

without using universes

Indeed the truth-value models is a model where the interpretation of this type
is empty
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Models of Type Theory

Axiom of Choice

In impredicative type theory, one can define

∃y : B.C = ΠX : Prop.(Πx : B.C → X) → X

but then it does not seem possible to prove AC

(Πx : A.∃y : B.R x y) → ∃f : A → B.Πx : A.R x (f x)
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Models of Type Theory

A new model

We sketch a model construction, due to Stefano Berardi, Herman Geuvers
and Thomas Streicher, which shows that

AC is not provable

there is no way to realise the context

B : Prop, t : B, f : B

axI : ΠC : B → Prop. C t → C f → Πx : B.C x
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Models of Type Theory

Two models

In the truth-value models AC is true and the previous context is inhabited

In any D-set model also, AC is true and the previous context is inhabited
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Models of Type Theory

Motivation

Given a domain D, model of lambda-calculus, so that we have an embedding
of [D → D] in D it is natural to interpret a type as a subset of D

If X, Y ⊆ D we define

X → Y = {d ∈ D | ∀x ∈ X.d · x ∈ Y } = {d ∈ D | d ·X ⊆ Y }

This will interpret small types
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Models of Type Theory

The category of contexts

A type will be a pair X, a : X → D where X is a(n arbitrary) set and a an
arbitrary set-theoretic function

A context with be a tuple n, X, a : X → Dn

A map (n, X, a) → (m,Y, b) is a pair (f, g) where f is a set-theoretic map
f : X → Y and g : Dn → Dm is a continuous map such that b f = g a
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Models of Type Theory

Families and terms

Given Γ = (n, X, a) an element A of Type(Γ) is a family Yx, bx : Yx → D
indexed by x in X

An element of Elem(Γ, A) is a pair ((sx), f) where sx ∈ Yx and f is continuous
function f : Dn → D such that for all x in X we have bx(sx) = f(a(x))

We can define the substitution operation by composition
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Models of Type Theory

Impredicative universes

This model has two impredicative universes

Pow(D), a : Pow(D) → D where a(X) =⊥ we define T (X) = X, i : X → D
where i is the inclusion

P (D), a : P (D) → D where a(X) =⊥ we define T (X) = X, i : X → D
where i is the inclusion

where P (D) = {X ⊆ D | ∀a. a ∈ X → X = D}

We shall use the second universe
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Models of Type Theory

Anaysis of this model

If we have u, v in D we define the function C : D → P (D) such that
C(e) = {d ∈ D | e = u ∨ e = v}

Notice that equality in D is in general undecidable but we have C(e) in P (D)

Using C we see that if we have

axI : ΠC : B → Prop. C t → C f → Πx : B.C x

then we have e = u ∨ e = v for all e in D which implies that D is trivial
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