
Models of Type Theory

Thierry Coquand

August. 22, 2007



Models of Type Theory

Content of the course

Lecture I: Short history of type theory, connections set theory/type theory

Lecture II: Models of type theory, category with families, applications of
semantics

1



Models of Type Theory

Content of the course

Lecture II: presentation of the D-set model (Hyland, Moggi)

M. Hofmann Syntax and Semantics of Dependent Types

G. Longo and E. Moggi Constructive Natural Deduction and its “ω-set”
interpretation

Applications: (relative) consistency proof for a system without set-theoretic
models

non derivability results (Σ is not definable in CC)

Lecture I: slides of Alexandre Miquel, TYPES Summer School 2005

2



Models of Type Theory

Foundations of mathematics

type theory (1908), simple type theory (1940), constructive type theory (1972)

set theory (1908), Z, ZF, ZFC, BG

topos theory (1970)

Several alternatives: extensional/intensional, predicative/impredicative,
classical/intuitionistic, axiom of choice

3



Models of Type Theory

An optimal type system?

Martin-Löf (1970): λ∗

M,A ::= x | λx : A.M | Πx : A.A | ∗

() wf

Γ ` A : ∗
Γ, x : A wf

4



Models of Type Theory

An optimal type system?

Γ wf x : A in Γ
Γ ` x : A

Γ ` N : Πx : A.B Γ ` M : A

Γ ` N M : B[M ]
Γ, x : A ` M : B

Γ ` λx : A.M : Πx : A.B

Γ, x : A ` B : ∗
Γ ` Πx : A.B : ∗

Γ wf

Γ ` ∗ : ∗

Γ ` M : A Γ ` B : ∗ A =β B

Γ ` M : B

5



Models of Type Theory

An optimal type system?

One can interpret λ2 in this system

One can interpret higher-order logic, Leibniz equality

One can represent the type of Church numeral N : ∗ and prove the axiom of
infinity

6



Models of Type Theory

An optimal type system?

Girard (1970): this system is contradictory

Not so obvious: types are not sets

I present later a possible explanation (A. Miquel, 2001)

T. Hurkens (1994) found a clever short derivation

One can define Yk : ΠA : ∗.(A → A) → A such that Yk A f = f (Yk+1 A f)
and hence represent all partial recursive functions N → N (M. Reinholt, A. Meyer
1986)

7



Models of Type Theory

Curry-Howard correspondance

Common foundation to logic and set theory

propositions are identified to sets

truth = inhabitation

∃i : I.Bi is explained as Σi∈IBi

8



Models of Type Theory

Normalisation proof for Fω

CA→B(N) =def ∀M.CA(M) ⇒ CB(N M)

for A,B : ∗ and CA(M) is a proposition

C∗→∗(N) =def ΠM.C∗(M) → C∗(N M)

C∗(A) = set of reducibility candidates at type A

Cκ(M) is a set if κ is a kind

Similar constructions, replacing propositions by sets

9



Models of Type Theory

Impredicativity and Curry-Howard

Impredicativity: propositions form a type

Curry-Howard: propositions = types

The natural conclusion is that there is a type of all types ∗ : ∗

10



Models of Type Theory

Impredicativity and Curry-Howard

What goes wrong?

axiom of reducibility: purely pragmatic justification for Russell-Whitehead
(1908)

Weyl (1946): this “is a bold, an almost fantastic axiom; there is little
justification for it in the real world in which we live, and none at all in the
evidence on which our mind bases its constructions”

11



Models of Type Theory

Predicative type theory

Keep “propositions=types” but take away impredicativity

Keep the idea of universes

Replace the universe ∗ by an universe U of small types

This was introduced by analogy to the notion of universe previously introduced
by Grothendieck

12



Models of Type Theory

Predicative type theory

We have types Nat, N0, N1, N2

Since the system is predicative we have to introduce these types as primitive

Type formations: Πx : A.B, Σx : A.B, Wx : A.B

Functional programming language with dependent types

How to build dependent types? For instance to define T 0 = N0, T 1 = N1

We need universes

13



Models of Type Theory

Predicative type theory

We replace the type of all type by a universe U of small types

This is a reflection principle. We reflect the general construction on types in
the type U

A : U, B : U [x : A]
Πx : A.B : U

,
A : U

A type

14



Models of Type Theory

Predicative type theory

data Nat : Set where
zero : Nat
succ : Nat -> Nat

data _*_ (A B : Set) : Set where
_,_ : A -> B -> A * B

data N0 : Set where

exit : {A : Set} -> N0 -> A
exit ()

15



Models of Type Theory

Predicative type theory

data _+_ (A B : Set) : Set where
Inl : A -> A + B
Inr : B -> A + B

_<->_ : Set -> Set -> Set
A <-> B = (A -> B) * (B -> A)

neg : Set -> Set
neg A = A -> N0

16



Models of Type Theory

Predicative type theory

data N2 : Set where
zero : N2
one : N2

Vec : Nat -> Set -> Set
Vec zero X = One
Vec (suc n) X = X * Vec n X

data Sigma (A : Set) (B : A -> Set) : Set where
exI : (a : A) -> B a -> Sigma A B

17



Models of Type Theory

Predicative type theory

prop : (F : N2 -> Set) -> F zero + F one <-> Sigma N2 F
prop F = dir , conv
where
dir : F zero + F one -> Sigma N2 F
dir (Inl a0) = exI zero a0
dir (Inr a1) = exI one a1

conv : Sigma N2 F -> F zero + F one
conv (exI zero a0) = Inl a0
conv (exI one a1) = Inr a1

18



Models of Type Theory

Minimal simple type theory

First designed by Church 1940 to simplify the system of Russell-Whitehead,
using classical logic

Minimal version: probably first explicitated by Martin-Löf and Girard (1970)

Types A ::= A → A | Prop

Prop is the type of propositions

Terms: simply typed terms with two constants

(⇒) : Prop → Prop → Prop, ∀ : (A → Prop) → Prop

19



Models of Type Theory

Minimal simple type theory

We write ∀x : A.φ for ∀ (λx : A.φ)

A proposition is a term of type Prop

The deduction rules are given by the usual natural deduction rules of
introduction and elimination for implication and universal quantification

The system Fω (Girard, 1970) is essentially a lambda calculus of proofs for
minimal simple type theory

20



Models of Type Theory

Minimal simple type theory

Leibniz equality x =A y is defined by ∀f : A → Prop. f x ⇒ f y

The extensionality axioms (Church 1940) are

(φ1 ⇔ φ2) ⇒ φ1 =Prop φ2

(∀x : A.f x =B g x) ⇒ f =A→B g

The axiom of excluded midle is

∀φ : Prop. ¬¬φ ⇒ φ

21



Models of Type Theory

Minimal simple type theory

This system is intensional and minimal

There are translations from the extensional and classical systems into this
more basic system:

the system with extensionality can be interpreted in the minimal system, a
type becomes a type with an equivalence relation (R. Gandy, 1958)

the classical system can be interpreted in the minimal system by the so-called
negative translation (Kolmogorov 1925, Gentzen, Gödel 1932)

22



Models of Type Theory

Minimal simple type theory

The system is impredicative

It is illuminating to look at the interpretation in λ∗

If instead we use a predicative universe for the type of propositions we cannot
translate ∀ : (Prop → Prop) → Prop

This system has a finitary consistency proof by interpreting Prop as the finite
set {0, 1} (truth-table model)

23



Models of Type Theory

Higher-order arithmetic

We can add a type Nat of natural numbers with constants 0 : Nat and
S : Nat → Nat and the usual Peano axioms

There is no finitary consistency proof any more

By the translations given above the system is as strong as its extensional
classical version

24



Models of Type Theory

Excluded Middle

We have two possible formulations of excluded-middle

∀A : U.¬¬A → A where ¬A = A → N0

ΠA : U.A + ¬A

Exercise: Show that they are equivalent

(ΠA : U.¬¬A → A) ↔ (ΠA : U.A + ¬A)

25



Models of Type Theory

Excluded Middle

lem1 : {A : Set} -> neg (neg (A + neg A))
lem1 {A} = \ f -> f (Inr (\ p -> f (Inl p)))

lem2 : ((A : Set) -> neg (neg A) -> A) ->
((A : Set) -> A + neg A)

lem2 h A = h (A + neg A) lem1

lem3 : ((A : Set) -> A + neg A) ->
((A : Set) -> neg (neg A) -> A)

lem3 h A with h A
lem3 h A | Inl a = \ x -> a
lem3 h A | Inr b = \ x -> exit (x b)

26



Models of Type Theory

Predicative type theory

We need to introduce an equality type Id as a primitive type

We can show one of Peano axiom

¬(Id 0 (S 0))

because we can define F : Nat → U such that F 0 is provable and F (S 0) =⊥

Notice that we have used the universe U in this argument.

Question: can we prove ¬(Id 0 (S 0)) in type theory without universes?

27



Models of Type Theory

Predicative type theory

One can translate a predicative version of higher-order arithmetic, where
one can quantify over natural numbers, functions, functionals, . . . but not over
propositions, predicates

The intensional axiom of choice is provable

(Πx : A.Σy : B.R x y) → Σf : A → B.Πx : A.R x (f x)

28



Models of Type Theory

Aczel reducibility context

Assume that we can find an instance of the following context

B : U, ε : U → B, T : B → U

ax : ΠA : U. A ↔ T (ε A)

then we can use B as a small type of propositions and interpret higher-order
arithmetic

29



Models of Type Theory

Aczel reducibility context

Define

p1 ⇒ p2 = ε(T p1 → T p2)

∀Af = ε(Πx : A. T (f x))

Then we can show

T (p1 ⇒ p2) ↔ (T p1 → T p2))

T (∀A f) ↔ Πx : A. T (f x))

30



Models of Type Theory

Classical logic

If we add classical logic, for instance as the axiom

ΠA : U. A + ¬A

then we can find an instance of Aczel reducibility context

B = N2, T 0 = N0, T 1 = N1

31



Models of Type Theory

Classical logic

T : N2 -> Set
T one = N1
T zero = N0

32



Models of Type Theory

Classical logic

module class (axC : (A : Set) -> A + neg A) where

funChoice : (A : Set) -> A + neg A -> N2
funChoice A (Inl a) = one
funChoice A (Inr b) = zero

lemChoice : (A : Set) ->
(x : A + neg A) -> A <-> T (funChoice A x)

lemChoice A (Inl a) = (\ p -> unit) , (\ q -> a)
lemChoice A (Inr b) = b , exit

33



Models of Type Theory

Classical logic

epsilon : Set -> N2
epsilon A = funChoice A (axC A)

prop : (A : Set) -> A <-> T (epsilon A)
prop A = lemChoice A (axC A)

Exercise: find a shorter derivation with the with construction

34



Models of Type Theory

Classical logic

If we add classical logic to constructive type theory, it is possible to interpret
impredicative quantification

35



Models of Type Theory

Aczel reducibility context

If we strengthen the context

B : U, ε : U → B, T : B → U

by asking T (ε X) = X then we can use B as a type of all types and we get an
inconsistent system

36



Models of Type Theory

Impredicative universe

Instead of having a type of all types, we can still keep the idea of propositions
as types by having an impredicative universe Prop

An impredicative universe is a type Prop with a dependent type T x [x : Prop]
and an universal quantification ∀ : (A → Prop) → Prop with two maps

in : (Πx : A.T (f x)) → T (∀ f), out : T (∀ f) → (Πx : A.T (f x))

such that out (in u) = u : Πx : A.T (f x)

37



Models of Type Theory

Impredicative universe

One can then interpret system F and even Fω in this system

Also we can define Leibniz equality Id A at each type A

Proof-irrelevance states that for all x : Prop we can prove Πp q :
T x. Id (T x) p q

Proposition: In impredicative type theory, classical logic implies proof
irrelevance

38



Models of Type Theory

Impredicative universe

This is consistent with the fact that classically the interpretations of the
propositions have to be “small”

If we have b : Prop such that T b = N2 then the system negates classical
logic. Is it still consistent??

Lecture II will provide a model of such a system, hence a relative consistency
proof

39



Models of Type Theory

Asymmetry between universal/existential quantification

If we require ∃ : (A → Prop) → Prop with two maps

in : (Σx : A.T (f x)) → T (∃ f), out : T (∃ f) → (Σx : A.T (f x))

with out (in u) = u then we get an inconsistent system, since we have a retraction
from Prop to the type ∃x : Prop.a where a : Prop is such that T a is inhabited

40



Models of Type Theory

A table of different systems

ZFC, ZF, topos theory, CZF, type theory, impredicative type theory w.r.t.

extensional axiom of choice

countable choice

impredicativity

extensionality

classical logic

41



Models of Type Theory

Mathematics in type theory

We present two main ways of representing set theory in type theory

to interpret a set as a tree (or a pointed graph) with some bissimilarity relation
as equality

to interpret a set as a type with an equivalence relation on this type

42



Models of Type Theory

The W -type

We recall the type Wx : A.B of well-founded trees given a type A and a
family of types over it

Via Curry-Howard, this can be seen as a new quantifier

Πx : N2.B is equivalent to B(0) ∧B(1)

Σx : N2.B is equivalent to B(0) + B(1)

Wx : N2.B is equivalent to ¬(B(0) ∧B(1))

Wx : A.B → ¬(Πx : A.B)

43



Models of Type Theory

The W -type

data W (A : Set) (B : A -> Set) : Set where
sup : (a : A) -> (B a -> W A B) -> W A B

lem : {A : Set} {B : A -> Set} ->
((x : A) -> B x) -> neg (W A B)

lem h (sup a f) = lem h (f (h a))

44



Models of Type Theory

The W -type

Exercise: Show that

W N2 F ↔ ¬(F 0 ∧ F 1)

if F : N2 → U

45



Models of Type Theory

Sets as trees

This interpretation is due to Peter Aczel (1978)

The type of trees will then be V = WX : U.X

Intuitively a tree t = sup I f is given by a small index set I and a family of
subtrees f : I → V

V is the type of sets

Equality is bissimulation which is defined inductively, it will be of type
V → V → U. Similarly membership will be of type V → V → U

U is used both as a type of propositions and as the type of (small) index types
for sets.

46



Models of Type Theory

Sets as trees

We get an interpretation of a set theory known as CZF

In this set theory we don’t have in general the power set axiom

The power set axiom holds iff Aczel reducibility context

B : U, ε : U → B, T : B → U

ax : ΠA : U. A ↔ T (ε A)

can be realised (which is very strong and not computational, as we have seen)

47



Models of Type Theory

Sets as pointed graphs

A variation of this interpretation is due to Alexandre Miquel

This interpretation covers non necessarily well-founded sets

A point graph is simply a type A with an element a : A and a relation
R : A → A → Prop

Equality is defined coinductively (which can be defined impredicatively as the
union of all relations that are bissimulations)

An element of X = (A, a,R) is (A, b,R) such that R a b holds (we change
the root of the graph)

48



Models of Type Theory

Sets as pointed graphs

This gives the clearest way to get a paradox in λ∗: if we apply this from λ∗
we get a set theory in which we can interpret the general comprehension

∃y.∀x.(x ∈ y ↔ φ(x))

which is contradictory by forming r such that

∀x.(x ∈ r ↔ x /∈ x)

49



Models of Type Theory

Sets as types with equivalence relations

This interpretation comes from Bishop (1967) and it is remarkable how well
his informal explanations in type theory

A set if a type A with an equivalence relation =A

A set is defined when we describe how to construct its members . . . and
describe what it means for two members to be equal

50



Models of Type Theory

Sets as types with equivalence relations

A map from (A,=A) to (B,=B) is a type theoretic function f : A → B such
that a1 =A a2 → f a1 =B f a2

If A and B are sets, then a function from A to B is a rule that assigns to
each element of A an element of B and is extensional

We get in this way a category if we say that f, g : (A,=A) → (B,=B) are
equal iff Πa : A. f a =B g a holds

One can explore the properties of this category dependent on the strength of
the type theory

51



Models of Type Theory

Sets as types with equivalence relations

Notice that this generalises Gandy’s interpretation of extensional type theory
in intensional type theory

f : (A,=A) → (B,=B) is mono iff f a1 =B f a2 → a1 =A a2

f : (A,=A) → (B,=B) is epi iff Πb : B.Σa : A. b =B f a (not so easy)

Some surprise: mono epi 6= iso

It is also remarkable that Bishop defines a subset of X as a mono Y → X

52



Models of Type Theory

Sets as types with equivalence relations

The fact that any epi splits is a strong axiom, which is equivalent to the
extensional version of the axiom of choice and which implies classical logic

53



Models of Type Theory

Problem with defining model of lambda-calculus

General remark before starting the notion of model of type theory

If Γ ` M : A and ρ an environment we try to define [[M ]]ρ

For defining [[λx.M ]]ρ it is not enough to know the set theoretic function

a 7−→ [[M ]]ρ,x=a

For instance, for domain models, we need to know also that this function is
continuous.

54


